Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 

 

The integrability problem for Lie equations


Author: Hubert Goldschmidt
Journal: Bull. Amer. Math. Soc. 84 (1978), 531-546
MSC (1970): Primary 58H05, 22E65, 58G99, 35N10, 53C10
MathSciNet review: 0517116
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. Claudette Buttin and Pierre Molino, Théorème général d’équivalence pour les pseudogroupes de Lie plats transitifs, J. Differential Geometry 9 (1974), 347–354 (French). MR 0353382
  • 2. É. Cartan, Sur la structure des groupes infinis de transformations, Ann. Sci. École Norm. Sup. 21 (1904), 153-206; 22 (1905), 219-308; Oeuvres complètes: II, vol. 2, Groupes infinis, systèmes différentiels, théories d'équivalence, Gauthier-Villars, Paris, 1953, pp. 571-714.
  • 3. Elie Cartan, Œuvres complètes. Partie II. Vol. 1. Algèbre, formes différentielles, systèmes différentiels. Vol. 2. Groupes infinis, systèmes différentiels, théories d’équivalence, Gauthier-Villars, Paris, 1953 (French). MR 0058523
  • 4. Jack F. Conn, A new class of counterexamples to the integrability problem, Proc. Nat. Acad. Sci. U.S.A. 74 (1977), no. 7, 2655–2658. MR 0464334
  • 5. Jack F. Conn, Nonabelian minimal closed ideals of transitive Lie algebras, Mathematical Notes, vol. 25, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1981. MR 595686
  • 6. Hubert Goldschmidt, Existence theorems for analytic linear partial differential equations, Ann. of Math. (2) 86 (1967), 246–270. MR 0219859
  • 7. Hubert Goldschmidt, Prolongations of linear partial differential equations. I. A conjecture of Élie Cartan, Ann. Sci. École Norm. Sup. (4) 1 (1968), 417–444. MR 0235584
  • 8. Hubert Goldschmidt, On the Spencer cohomology of a Lie equation, Partial differential equations (Proc. Sympos. Pure Math., Vol. XXIII, Univ. California, Berkeley, Calif., 1971) Amer. Math. Soc., Providence, R.I., 1973, pp. 379–385. MR 0343322
  • 9. Hubert Goldschmidt, Sur la structure des équations de Lie. I. Le troisième théorème fondamental, J. Differential Geometry 6 (1971/72), 357–373 (French). MR 0301768
  • 10. Hubert Goldschmidt, Sur la structure des équations de Lie. II. Équations formellement transitives, J. Differential Geometry 7 (1972), 67–95 (French). MR 0326783
  • 11. Hubert Goldschmidt, Sur la structure des équations de Lie. III. La cohomologie de Spencer, J. Differential Geometry 11 (1976), no. 2, 167–223 (French). MR 0517115
  • 12. Hubert Goldschmidt and Donald Spencer, On the non-linear cohomology of Lie equations. I, Acta Math. 136 (1976), no. 1-2, 103–170. MR 0445566
  • 13. H. Goldschmidt and D. Spencer, On the non-linear cohomology of Lie equations. III, IV, J. Differential Geometry 13 (1978).
  • 14. Victor Guillemin, A Jordan-Hölder decomposition for a certain class of infinite dimensional Lie algebras, J. Differential Geometry 2 (1968), 313–345. MR 0263882
  • 15. Victor W. Guillemin and Shlomo Sternberg, An algebraic model of transitive differential geometry, Bull. Amer. Math. Soc. 70 (1964), 16–47. MR 0170295, 10.1090/S0002-9904-1964-11019-3
  • 16. V. W. Guillemin and S. Sternberg, The Lewy counterexample and the local equivalence problem for 𝐺-structures, J. Differential Geometry 1 (1967), 127–131. MR 0222800
  • 17. Antonio Kumpera and Donald Spencer, Lie equations. Vol. I: General theory, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1972. Annals of Mathematics Studies, No. 73. MR 0380908
  • 18. M. Kuranishi and A. M. Rodrigues, Quotients of pseudo groups by invariant fiberings, Nagoya Math. J. 24 (1964), 109–128. MR 0168705
  • 19. Bernard Malgrange, Equations de Lie. I, J. Differential Geometry 6 (1972), 503–522 (French). Collection of articles dedicated to S. S. Chern and D. C. Spencer on their sixtieth birthdays. MR 0326784
  • 20. Pierre Molino, Théorie des 𝐺-structures: le problème d’équivalence, Lecture Notes in Mathematics, Vol. 588, Springer-Verlag, Berlin-New York, 1977 (French). Notes rédigées avec la collaboration de F. Toupine. MR 0517117
  • 21. Alan S. Pollack, The integrability problem for pseudogroup structures, J. Differential Geometry 9 (1974), 355–390. MR 0353383
  • 22. D. C. Spencer, Deformation of structures on manifolds defined by transitive, continuous pseudogroups. I. Infinitesimal deformations of structure, Ann. of Math. (2) 76 (1962), 306–398. MR 0156363

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1970): 58H05, 22E65, 58G99, 35N10, 53C10

Retrieve articles in all journals with MSC (1970): 58H05, 22E65, 58G99, 35N10, 53C10


Additional Information

DOI: https://doi.org/10.1090/S0002-9904-1978-14492-9