Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Richard D. Brauer


Author: Walter Feit
Journal: Bull. Amer. Math. Soc. 1 (1979), 1-20
MSC (1970): Primary 01A07
DOI: https://doi.org/10.1090/S0273-0979-1979-14547-6
MathSciNet review: 513747
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [A] H. Aramata, Über die Teilbarkeit der Dedekindschen Zetafunktionen, Proceedings of the Imperial Acad, of Japan 9 (1933), 31-34.
  • [BGG] I. N. Bernstein, I. M. Gelfand and S. L Gelfand, Category of g modules, Functional Analysis and its Applications 10 (1976), 87-92.
  • [Bl] H. F. Blichfeldt, Finite collineation groups, Univ. of Chicago Press, Chicago, III., 1917.
  • [Bu1] W. Burnside, On a class of groups of finite order, Transactions of the Cambridge Philos. Soc. 18 (1900), 269-276.
  • [Bu2] W. Burnside, Theory of groups of finite order 2nd ed., Cambridge Univ. Press, London and New York, 1911.
  • [Da] E. C. Dade, Blocks with cyclic defect groups, Ann. of Math. (2) 84 (1966), 20-48. MR 200355
  • [Di] L. E. Dickson, Algebras and their arithmetics, Univ. of Chicago Press, Chicago, III., 1923.
  • [FT1] W. Feit and J. G. Thompson, Groups which have a faithful representation of degree less than (p -l)/2, Pacific J. Math. 11 (1961), 1257-1262. MR 133373
  • [FT2] W. Feit and J. G. Thompson, Solvability of groups of odd order, Pacific J. Math. 13 (1963), 755-1029. MR 166261
  • [F] G. Frobenius, Collected works, Springer-Verlag, Berlin, Heidelberg, New York, 1968. MR 235974
  • [Gl] G. Glaubennan, On groups with a quaternion Sylow 2-subgroup, Illinois J. Math. 18 (1974), 60-65. MR 332969
  • [Grl] J. A. Green, On the indecomposable representations of a finite group, Math. Z. 70 (1959), 430-445. MR 131454
  • [Gr2] J. A. Green, Blocks of modular representations, Math. Z. 79 (1962), 100-115. MR 141717
  • [H] H. Hasse, Über p-adische Schiefkörper und ibre Bedeutung für die Arithmetik hypercomplexer Zahlkörper, Math. Ann. 104 (1931), 495-534. MR 1512683
  • [K] B. Kaufman, Crystal statistics, II, Partition junction evaluated by Spinor analysis, Phys. Rev. 76 (1949), 1232-1243,
  • [K-O] B. Kaufman and L. Onsager, Crystal statistics. III, Short range order in a binary Eising lattice, Phys. Rev. 76 (1949), 1244-1252.
  • [M] H. Maschke, Ueber den Arithmetischen Charakter der Coefficienten der Substitutionen endlicher linearer Substitutionsgruppen, Math. Ann. 50 (1898), 482-498. MR 1511011
  • [N] H. Nagao, A proof of Brauer's theorem on generalized decomposition numbers, Nagoya Math. J. 22 (1963), 73-77. MR 153753
  • [Os] M. Osima, Notes on blocks of group characters, Math. J. Okayama Univ. 4 (1955), 175-188. MR 78364
  • [R] P. Roquette, Arithmetische Untersuchung des Charakterringes einer endlichen gruppe, J. Reine. Angew. Math. 190 (1952), 148-168. MR 53943
  • [Sc] I. Schur, Collected works, Springer-Verlag, Berlin, Heidelberg, New York, 1973.
  • [St] R. Steinberg, Representations of algebraic groups, Nagoya Math. J. 22 (1963), 33-56. MR 155937
  • [Tl] J. G. Thompson, Normal p-complements for finite groups, Math. Z, 72 (1960), 332-354. MR 117289
  • [T2] J. G. Thompson, Vertices and sources, J. Algebra 6 (1967), 1-6. MR 207863
  • [Wal] S. Wang, A counter-example to Grunwald's theorem, Ann. of Math. (2) 49 (1948), 1008-1009. MR 26992
  • [Wa2] S. Wang, On Grunwatd's theorem, Ann. of Math. (2) 51 (1950), 471-484. MR 33801
  • [Wel] H. Weyl, Generalized Riemann matrices and factor sets, Ann. of Math. (2) 37 (1936), 709-745. MR 1503306
  • [We2] H. Weyl, Classical groups, Princeton Univ. Press, Princeton, N. J., 1946. MR 1488158
  • [Z] H. Zassenhaus, Kennzeichnung endlicher linearer Gruppen als Permutationsgruppen, Abh. Math. Seminar, Hamburg Univ. 11 (1936), 17-40,

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1970): 01A07

Retrieve articles in all journals with MSC (1970): 01A07


Additional Information

DOI: https://doi.org/10.1090/S0273-0979-1979-14547-6

American Mathematical Society