Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 

 

Complex manifolds and mathematical physics


Author: R. O. Wells Jr.
Journal: Bull. Amer. Math. Soc. 1 (1979), 296-336
MSC (1970): Primary 32-02, 32C35, 32L05, 32L10, 32G05, 53C65, 83C50
MathSciNet review: 520077
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. Aldo Andreotti and François Norguet, Problème de Levi et convexité holomorphe pour les classes de cohomologie, Ann. Scuola Norm. Sup. Pisa (3) 20 (1966), 197–241 (French). MR 0199439
  • 2. M. F. Atiyah, N. J. Hitchin, and I. M. Singer, Deformations of instantons, Proc. Nat. Acad. Sci. U.S.A. 74 (1977), no. 7, 2662–2663. MR 0458424
  • 3. M. F. Atiyah and R. S. Ward, Instantons and algebraic geometry, Comm. Math. Phys. 55 (1977), no. 2, 117–124. MR 0494098
  • 4. W. Barth, Some properties of stable rank-2 vector bundles on 𝑃_{𝑛}, Math. Ann. 226 (1977), no. 2, 125–150. MR 0429896
  • 5. S. S. Chern and J. K. Moser, Real hypersurfaces in complex manifolds, Acta Math. 133 (1974), 219–271. MR 0425155
  • 6. G. deRham, Variétés differentiables, Hermann, Paris, 1960.
  • 7. Roger Godement, Topologie algébrique et théorie des faisceaux, Hermann, Paris, 1973 (French). Troisième édition revue et corrigée; Publications de l’Institut de Mathématique de l’Université de Strasbourg, XIII; Actualités Scientifiques et Industrielles, No. 1252. MR 0345092
  • 8. Robert C. Gunning and Hugo Rossi, Analytic functions of several complex variables, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1965. MR 0180696
  • 9. R. O. Hansen and Ezra T. Newman, A complex Minkowski space approach to twistors, General Relativity and Gravitation 6 (1975), no. 4, 361–385. MR 0413985
  • 10. F. Reese Harvey and H. Blaine Lawson Jr., On boundaries of complex analytic varieties. II, Ann. of Math. (2) 106 (1977), no. 2, 213–238. MR 0499285
  • 11. F. Hirzebruch, Topological methods in algebraic geometry, Third enlarged edition. New appendix and translation from the second German edition by R. L. E. Schwarzenberger, with an additional section by A. Borel. Die Grundlehren der Mathematischen Wissenschaften, Band 131, Springer-Verlag New York, Inc., New York, 1966. MR 0202713
  • 12. L. Hughston, Twistor description of low-lying baryon states, Twistor Newsletter No. 1, pp. 1-6, March 1976, Oxford.
  • 13. N. H. Kuiper, On conformally-flat spaces in the large, Ann. of Math. (2) 50 (1949), 916–924. MR 0031310
  • 14. D. Lerner, The non-analytic version of Kerr's theorem, Twistor Newsletter No. 4, April 1977, Oxford.
  • 15. D. Lerner, The inverse twistor function for positive frequency fields, Twistor Newsletter No. 5, July 1977, Oxford.
  • 16. James Morrow and Kunihiko Kodaira, Complex manifolds, Holt, Rinehart and Winston, Inc., New York-Montreal, Que.-London, 1971. MR 0302937
  • 17. R. Penrose, Twistor algebra, J. Mathematical Phys. 8 (1967), 345–366. MR 0216828
  • 18. R. Penrose, The structure of space-time, Batelle Rencontres 1967, (C. M. de Witt and J. A. Wheeler eds.), Benjamin, New York, 1968.
  • 19. R. Penrose, Twistor quantisation and curved space-time, Inter. J. Theoret. Phys. 1 (1968), 61-99.
  • 20. R. Penrose, Solutions of the zero-rest-mass equations, J. Math. Phys. 10 (1969), 38-39.
  • 21. R. Penrose, Twistor theory, its aims and achievements, Quantum Gravity: An Oxford Symposium (Isham, Penrose and Sciama eds.), Clarendon Press, Oxford, 1975.
  • 22. Roger Penrose, Nonlinear gravitons and curved twistor theory, General Relativity and Gravitation 7 (1976), no. 1, 31–52. The riddle of gravitation–on the occasion of the 60th birthday of Peter G. Bergmann (Proc. Conf., Syracuse Univ., Syracuse, N. Y., 1975). MR 0439004
  • 23. Roger Penrose, The twistor programme, Rep. Mathematical Phys. 12 (1977), no. 1, 65–76. MR 0465032
  • 24. R. Penrose, Massless fields and sheaf cohomology, Twistor Newsletter No. 5, July 1977, Oxford.
  • 25. R. Penrose and M. A. H. MacCallum, Twistor theory: an approach to the quantisation of fields and space-time, Phys. Rep. 6C (1973), no. 4, 241–315. MR 0475660
  • 26. Ivor Robinson, Null electromagnetic fields, J. Mathematical Phys. 2 (1961), 290–291. MR 0127369
  • 27. Noboru Tanaka, On the pseudo-conformal geometry of hypersurfaces of the space of 𝑛 complex variables, J. Math. Soc. Japan 14 (1962), 397–429. MR 0145555
  • 28. A. Trautman, F. A. E. Pirani and H. Bondi, Lectures on general relativity, Brandeis Summer Institute in Theoretical Physics, 1964, vol. 1, Prentice-Hall, Englewood Cliffs, N. J., 1965.
  • 29. R. Ward, The twisted photon, Twistor Newsletter No. 1, March 1976, Oxford.
  • 30. R. Ward, Curved twistor space, thesis, D. Phil., Oxford, 1977.
  • 31. R. S. Ward, On self-dual gauge fields, Phys. Lett. A 61 (1977), no. 2, 81–82. MR 0443823
  • 32. R. O. Wells Jr., Differential analysis on complex manifolds, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1973. Prentice-Hall Series in Modern Analysis. MR 0515872
  • 33. R. O. Wells Jr. and Joseph A. Wolf, Poincaré series and automorphic cohomology on flag domains, Ann. of Math. (2) 105 (1977), no. 3, 397–448. MR 0447645
  • 34. Joseph A. Wolf, The action of a real semisimple group on a complex flag manifold. I. Orbit structure and holomorphic arc components, Bull. Amer. Math. Soc. 75 (1969), 1121–1237. MR 0251246, 10.1090/S0002-9904-1969-12359-1
  • 35. N. Woodhouse, Twistor cohomology without sheaves, Twistor Newsletter No. 2, June 1976, Oxford.

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1970): 32-02, 32C35, 32L05, 32L10, 32G05, 53C65, 83C50

Retrieve articles in all journals with MSC (1970): 32-02, 32C35, 32L05, 32L10, 32G05, 53C65, 83C50


Additional Information

DOI: http://dx.doi.org/10.1090/S0273-0979-1979-14596-8