Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Nonconvex minimization problems


Author: Ivar Ekeland
Journal: Bull. Amer. Math. Soc. 1 (1979), 443-474
MSC (1970): Primary 26A54, 26A96, 34H05, 35K55, 46B99, 47H10, 47H15, 49A10, 49B10, 58B20, 58C20, 93C15
DOI: https://doi.org/10.1090/S0273-0979-1979-14595-6
MathSciNet review: 526967
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. E. Asplund, Frèchet-differentiability of convex functions, Acta Math. 121 (1968), 31-47. MR 231199
  • 2. J. Aubin and J. Siegel, Fixed points and stationary points of dissipative multivalued maps, M.R. report 7712, University of Southern California, Los Angeles, 1977.
  • 3. J. M. Borwein, Weak local supportability and applications to approximation, Pacific J. Math. 82 (1979), no. 2, 323–338. MR 551692
  • 4. M. Crandall, 1976, personal communication.
  • 5. M. Edelstein, Farthest points of sets in uniformly convex Banach spaces, Israel J. Math. 4 (1966), 171-176. MR 203426
  • 6. M. Edelstein, On nearest points of sets in uniformly convex Banach spaces, J. London Math. Soc. 43 (1968), 375-377. MR 226364
  • 7. E. Bishop and R. R. Phelps, A proof that all Banach spaces are subreflexive, Bull. Amer. Math. Soc. 67 (1961), 97-98. MR 123174
  • 8. E. Bishop and R. R. Phelps, The support functional of a convex set, Convexity (Klee, ed.), Proc. Sympos. Pure Math., vol. 7, Amer. Math. Soc. Providence, R. I., 1963, pp. 27-35. MR 154092
  • 9. A. Brøndsted and R. T. Rockafellar, On the subdifferentiability of convex functions, Proc. Amer. Math. Soc. 16 (1965), 605-611. MR 178103
  • 10. H. Brézis and F. Browder, A general ordering principle in nonlinear functional analysis, Advances in Math. 21 (1976), 355-364. MR 425688
  • 11. F. Browder, Normal solvability for nonlinear mappings into Banach spaces, Bull. Amer. Math. Soc. 79 (1973), 328-350. MR 270223
  • 12. J. Caristi, Fixed point theorems for mappings satisfying inwardness conditions, Trans. Amer. Math. Soc. 215 (1976), 241-251. MR 394329
  • 13. F. Clarke, Generalized gradients and applications, Trans. Amer. Math. Soc. 205 (1975), 247-262. MR 367131
  • 14. F. Clarke, The maximum principle under minimum hypothesis, SIAM J. Control and Optimization 14 (1976), 1078-1091. MR 415453
  • 15. F. Clarke, A new approach to Lagrange multipliers, Math. Operations Res. 1 (1976), 165-174. MR 414104
  • 16. F. Clarke, Necessary conditions for a general control problem, Calculus of Variations and Optimal Control Theory (Russell, ed.), Academic Press, New York, 1976, pp. 257-278. MR 638210
  • 17. F. Clarke, Generalized gradients of Lipschitz functionals, MRC Technical Report #1687, University of Wisconsin, Madison, Wis., August 1976.
  • 18. F. Clarke, Pointwise contraction criteria for the existence of fixed points, MRC Technical Report #1658, July 1976, University of Wisconsin, Madison, Wis.; Bull. Canad. Math. Soc. (to appear). MR 482714
  • 19. I. Ekeland, Sur les problèmes variationnels, C. R. Acad. Sci. Paris 275 (1972), 1057-1059; 276 (1973), 1347-1348. MR 310670
  • 20. I. Ekeland, On the variational principle, J. Math. Anal. Appl. 47 (1974), 324-353. MR 346619
  • 21. Ivar Ekeland, The Hopf-Rinow theorem in infinite dimension, J. Differential Geom. 13 (1978), no. 2, 287–301. MR 540948
  • 22. I. Ekeland, Le théorème de Hopf-Rinow en dimension infinie, C. R. Acad. Sci. Paris 284 (1977), 149-150. MR 440604
  • 23. I. Ekeland and G. Lebourg, Generic Frechet-differentiability and perturbed optimization problems in Banach spaces, Trans. Amer. Math. Soc. 224 (1976), 193-216. MR 431253
  • 24. I. Ekeland and R. Temam, Convex analysis and variational problems, North-Holland, Amsterdam, 1976. MR 463994
  • 25. A. Hoffman, On approximate solutions of systems of linear inequalities, J. Res. Nat. Bureau Standards 49 (1952), 263-265. MR 51275
  • 26. Alexander D. Ioffe, Regular points of Lipschitz functions, Trans. Amer. Math. Soc. 251 (1979), 61–69. MR 531969, https://doi.org/10.1090/S0002-9947-1979-0531969-6
  • 27. J. Lasry, personal communication, 1972.
  • 28. G. Lebourg, Problèmes d'optimisation perturbés dans les espaces de Banach, preprint, CEREMADE, Université Paris-Dauphine, 1978.
  • 29. R. Martin, Invariant sets for evolution systems, Proc. International Conference on Differential Equations (Antosiewicz, ed.), Academic Press, New York, 1975. MR 467042
  • 30. M. Maschler and B. Peleg, Stable sets and stable points of set-valued dynamic systems, SIAM J. Control 14 (1976), 985-995. MR 436101
  • 31. J. Milnor, Morse theory, Ann. of Math. Studies, Princeton Univ. Press, Princeton, N. J., 1963. MR 163331
  • 32. L. Neustadt, Optimization: a theory of necessary conditions, Princeton Univ. Press, Princeton, N. J., 1976. MR 440440
  • 33. R. Palais, Morse theory on Hilbert manifolds, Topology 2 (1963), 299-340. MR 158410
  • 34. R. Pallu de la Barriere, Optimal control theory, Saunders, Philadelphia, Penn., 1967. MR 211770
  • 35. L. Pontryagin, V. Boltyanskiĭ, R. Gamkrelidze and E. Mischenko, The mathematical theory of optimal processes, Wiley, New York, 1962. MR 166037
  • 36. P. Rabinowitz, Periodic solutions of hamiltonian systems, MRC Technical Report #1783, August 1977. MR 467823
  • 37. S. Robinson, Regularity and stability for convex multivalued functions, Math. Operations Res. (1976), 130-143. MR 430181
  • 38. R. Palais and S. Smale, A generalized Morse theory, Bull. Amer. Math. Soc. 70 (1964), 165-170. MR 158411
  • 39. I. Ekeland and M. Valadier, Representation of set-valued mappings, J. Math. Anal. Appl. 35 (1971), 621-629. MR 280677

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1970): 26A54, 26A96, 34H05, 35K55, 46B99, 47H10, 47H15, 49A10, 49B10, 58B20, 58C20, 93C15

Retrieve articles in all journals with MSC (1970): 26A54, 26A96, 34H05, 35K55, 46B99, 47H10, 47H15, 49A10, 49B10, 58B20, 58C20, 93C15


Additional Information

DOI: https://doi.org/10.1090/S0273-0979-1979-14595-6

American Mathematical Society