Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.


Full text of review: PDF   This review is available free of charge.
Book Information:

Authors: Tim Poston and Ian Stewart
Title: Catastrophe theory and its applications
Additional book information: Surveys and Reference Works in Mathematics, Pitman, London, 1978, xviii + 491 pp., $50.00.

References [Enhancements On Off] (What's this?)

  • 1. V. I. Arnol′d, Singularities, bifurcations and catastrophes, Fiz.-Mat. Spis. B″lgar. Akad. Nauk. 27(60) (1985), no. 1, 25–48 (Bulgarian). Translated from the Russian by E. Khorozov. MR 801647
  • 2. M. V. Berry and M. R. Mackley, The six roll mill: unfolding an unstable persistently extensional flow, Philos. Trans. Roy. Soc. London Ser. A 287 (1977), 1-16. MR 489464
  • 3. D. Chillingworth, Elementary catastrophe theory, Bull. Inst. Math. Appl. 11 (1975), 155-159. MR 494223
  • 4. J. J. Callahan, Singularities and plane maps, Amer. Math. Monthly 81 (1974), 211-240. MR 353336
  • 5. M. Golubitsky, An introduction to catastrophe theory and its applications, SIAM Rev. 20 (1978), 352-387. MR 470984
  • 6. M. Golubitsky and B. Keyfitz, A qualitative study of the steady-state solutions for a continuous flow stirred tank chemical reactor, SIAM J. Appl. Math. (submitted).
  • 7. M. Golubitsky and D. Schaeffer, A theory for imperfect bifurcation via singularity theory, Comm. Pure Appl. Math. 32 (1979), no. 1, 21–98. MR 508917, https://doi.org/10.1002/cpa.3160320103
  • 8. M. Golubitsky and D. Schaeffer, Imperfect bifurcation in the presence of symmetry, Comm. Math. Phys. 67 (1979), no. 3, 205–232. MR 539727
  • 9. V. Poénaru, Singularities C, Lecture Notes in Math., vol. 510, Springer-Verlag, New York, 1976. MR 440597
  • 10. David G. Schaeffer and Martin A. Golubitsky, Bifurcation analysis near a double eigenvalue of a model chemical reaction, Arch. Rational Mech. Anal. 75 (1980/81), no. 4, 315–347. MR 607902, https://doi.org/10.1007/BF00256382
  • 11. D. Schaeffer and M. Golubitsky, Boundary conditions and mode jumping in the buckling of a rectangular plate, Comm. Pure Appl. Math. (submitted).
  • 12. S. Smale, Review of Catastrophe theory, Selected Papers, 1972-1977 by E. C. Zeeman, Bull. Amer. Math. Soc. 84 (1978), 1360-1367.
  • 13. I. N. Stewart, The seven elementary catastrophes, The New Scientist, Nov. 20, 1975, 447-454.
  • 14. H. J. Sussmann, Catastrophe theory, Synthèse 31 (1975), 229-270. MR 474381
  • 15. Héctor J. Sussmann and Raphael S. Zahler, Catastrophe theory as applied to the social and biological sciences: a critique, Synthese 37 (1978), no. 2, 117–216. Mathematical methods in the social sciences, III. MR 495176, https://doi.org/10.1007/BF00869575
  • 16. F. Takens, Singularities of vector fields, Inst. Hautes Étude Sci. Publ. Math. 43 (1973), 47-100. MR 339292
  • 17. R. Thom, Stabilité structurelle et morphogénèse, Benjamin, Reading, Mass., 1972; English transl, (by D. Fowler), 1975. MR 488155
  • 18. J. M. T. Thompson and G. W. Hunt, A general theory of elastic stability, Wiley, London, 1973. MR 400868
  • 19. J. M. T. Thompson and G. W. Hunt, Towards a unified bifurcation theory, J. Appl. Math. Phys. 26 (1975), 581-603. MR 388441
  • 20. E. C. Zeeman, Catastrophe theory, Sci. Amer. 234 (1976), 65-83.
  • 21. E. C. Zeeman, Catastrophe theory, Selected papers, 1972-1977, Addison-Wesley, Reading, Mass., 1977 MR 474383

Review Information:

Reviewer: Martin Golubitsky
Journal: Bull. Amer. Math. Soc. 1 (1979), 524-532
DOI: https://doi.org/10.1090/S0273-0979-1979-14605-6
American Mathematical Society