Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Nonlinear similarity of matrices


Authors: Sylvain E. Cappell and Julius L. Shaneson
Journal: Bull. Amer. Math. Soc. 1 (1979), 899-902
MSC (1970): Primary 57E05, 57A15, 15A21; Secondary 54C05, 12A50, 34D05, 22A05, 15A18
DOI: https://doi.org/10.1090/S0273-0979-1979-14688-3
MathSciNet review: 546313
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. V. I. Arnold, Ordinary differential equations, M.I.T. Press, Cambridge, Mass., 1973. MR 361233
  • 2. S. E. Cappell and Julius L. Shaneson, Pseudo-free group actions. I, Proc. 1978 Aarhus Topology Conf. (to appear). MR 482766
  • 3. S. E. Cappell and Julius L. Shaneson, Which groups have pseudo-free actions on spheres (to appear).
  • 4. Sylvain E. Cappell and Julius L. Shaneson, Linear algebra and topology, Bull. Amer. Math. Soc. (N.S.) 1 (1979), no. 4, 685–687. MR 532553, https://doi.org/10.1090/S0273-0979-1979-14667-6
  • 5. S. E. Cappell and Julius L. Shaneson, Linear representations which are topologically the same (to appear).
  • 6. N. Kuiper and J. W. Robbins, Topological classification of linear endomorphisms, Invent. Math. 19 (1973), 83-106. MR 320026
  • 7. H. Poincaré, Sur les courbes définies par les équations différentielles, Oeuvres de H. Poincaré, Vol. I 1928, Gauthier Villars, Paris.
  • 8. G. de Rham, Reidemeister's torsion invariant and rotations of S, Internat. Conf. on Differential Analysis, Oxford Univ. Press, Cambridge, 1964, pp. 27-36.
  • 9. G. de Rham, S. Maumary and M. Kervaire, Torsion et type simple d'homotopie, Lecture Notes in Math., vol. 48, Springer-Verlag, Berlin, New York, 1967.
  • 10. Mel Rothenberg, Torsion invariants and finite transformation groups, Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976) Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc., Providence, R.I., 1978, pp. 267–311. MR 520507
  • 11. R. Schultz, On the topological classification of linear representations (to appear). MR 500964

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1970): 57E05, 57A15, 15A21, 54C05, 12A50, 34D05, 22A05, 15A18

Retrieve articles in all journals with MSC (1970): 57E05, 57A15, 15A21, 54C05, 12A50, 34D05, 22A05, 15A18


Additional Information

DOI: https://doi.org/10.1090/S0273-0979-1979-14688-3

American Mathematical Society