The duality operation in the character ring of a finite Chevalley group

Author:
Dean Alvis

Journal:
Bull. Amer. Math. Soc. **1** (1979), 907-911

MSC (1970):
Primary 20C15

DOI:
https://doi.org/10.1090/S0273-0979-1979-14690-1

MathSciNet review:
546315

Full-text PDF

References | Similar Articles | Additional Information

**1.**A. Borel and J. Tits,*Groupes reductifs*, Inst. Hautes Etudes Sci. Publ. Math. 27 (1965), 55-151. MR**207712****2.**C. W. Curtis,*The Steinberg character of a finite group with a (B, N)-pair*, J. Algebra 4 (1966), 433-441. MR**201524****3.**C. W. Curtis,*Reduction theorems for characters of finite groups of Lie type*, J. Math. Soc. Japan 27 (1975), 666-688. MR**399282****4.**Charles W. Curtis,*Truncation and duality in the character ring of a finite group of Lie type*, J. Algebra**62**(1980), no. 2, 320–332. MR**563231**, https://doi.org/10.1016/0021-8693(80)90185-4**5.**P. Deligne and G. Lusztig,*Representations of reductive groups over finite fields*, Ann. of Math. 103 (1976), 103-161. MR**393266****6.**T. A. Springer,*A formula for the characteristic function of the unipotent set of a finite Chevalley group*(to appear).

Retrieve articles in *Bulletin of the American Mathematical Society*
with MSC (1970):
20C15

Retrieve articles in all journals with MSC (1970): 20C15

Additional Information

DOI:
https://doi.org/10.1090/S0273-0979-1979-14690-1