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have uncountably many ergodic equilibrium states. Fortunately, all is not as 
bad as that. For one thing, much of the pathology disappears if one restricts 
oneself to the smaller space % of interactions. For another thing, there is the 
classic theorem of Mazur, according to which the set of points $ at which P 
has a unique tangent is a dense Gô-set in $ , so from the point of view of 
Baire-category the occurrence of more than one ergodic equilibrium state for 
the same interaction is an exceptional phenomenon. The last chapter of our 
book discusses a strengthening of this statement. Think of some finite 
dimensional subspace 91 of <35. If 91 is well behaved, one expects the 
majority of points <& E 91 to possess exactly one equilibrium state. Excep
tionally, there may be two ergodic equilibrium states, but the subset of 91 
where this is the case should be small. Even smaller should be the subset of 
91 where there are three, and so on. Let us say that the Gibbs Phase Rule 
holds in 91 if the set {<E> G 91: <& has k ergodic equilibrium states} has 
Hausdorf f -dimension at most n - k + 1 in 91, where n = dim(9l). The set 
of ^-dimensional subspaces of % can be made into a complete metric space 
§n. The precise version of the statement "The Gibbs Phase Rule holds 
generically" is the theorem that {91 G §n: The Gibbs Phase Rule holds in 
91} is a dense Gô-set in §n. This is quite satisfactory, although conceivably 
one might want to know more, for instance, if dim(9L) = 2 and k = 3 ("triple 
point" or coexistence of three pure phases), one expects only isolated points 
in 91, not merely a set of Hausdorf f dimension 0; similarly for k = 2 
(coexistence of two pure phases) one should have nice curves in some sense or 
other. Perhaps future research will succeed in this direction. 

One more remark on the contents of the book. All definitions and theorems 
have their quantum mechanical analogues. In fact, the material is so 
organized that the two cases, classical and quantum, are discussed side by 
side, so that the investigation proceeds in parallel. In fact, on the level of 
general theory, there is hardly any difference, and the effect of quantum 
modification is present only for specific properties of specific models. 

My own assessment is that this book is a valuable compendium for 
research workers in the mathematical aspects of statistical mechanics, and it 
should also succeed in attracting outsiders from the mathematical community 
to acquaint themselves with a fascinating topic. 

ANDREW LENARD 
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Thermodynamic formalism: The mathematical structures of classical equilibrium 
statistical mechanics, by David Ruelle, Encyclopedia of Mathematics and 
its Applications (Gian-Carlo Rota, Editor), vol. 5, Addison-Wesley, Read
ing, Mass., 1978, xix + 183 pp., $21.50. 

The book under review is concerned with the general aspects of classical 
equilibrium statistical mechanics of lattice systems and some generalizations. 
Before commenting on the book we shall describe some of the main mathe
matical issues which arise in this deep and active area of mathematical 



932 BOOK REVIEWS 

physics. Physical motivation will be discussed only occasionally. There is a 
brilliant discussion of this as well as the historical background of the statisti
cal mechanical formalism in the lengthy introduction by A. S. Wightman to 

in 
The purpose of equilibrium statistical mechanics is to describe the 

(equilibrium) thermodynamic properties of certain "large" physical systems in 
terms of the microscopic laws of physics. The striking thing is that typically 
the values of n = 2 or 3 observables (almost) determine a thermodynamic 
state while N s 1023 parameters determine a microscopic state. One usually is 
interested in approximately 5 to 10 thermodynamic (= macroscopic) observ
ables and the relations between them. {These are often called equations of 
state.} Typically the values of a small subset of these observables will (almost) 
determine a state and there will be a distinguished function G of the values of 
this basic set such that (almost all of) the values of all other thermodynamic 
observables in this state will be obtained by evaluating appropriate deriva
tives of G at this state value. Such a function is called a thermodynamic 
potential. In order to agree with the general laws of thermodynamics it will 
have certain convexity properties. In the case of a simple fluid the (absolute) 
temperature T and chemical potential /x may serve as state parameters and 
the pressure P as the thermodynamic potential. In the case of a ferromagnet 
the temperature T and the magnetic field H may serve as state parameters 
and the free-energy per site ƒ as the thermodynamic potential. More explicitly 
now, the problem of statistical mechanics is to obtain the appropriate thermo
dynamic potential with appropriate convexity properties from the micro
scopic laws of physics. 

Note that there was some waffling above about states when we used the 
word "almost". This was because for certain special values of the state 
parameters phase transitions can occur i.e. some of the values of certain other 
thermodynamic observables are not uniquely determined. At such points the 
state structure gets more complicated and interesting! For example in the 
case of the Lenz-Ising ferromagnet (of at least 2 dimensions), spontaneous 
magnetization (per site) can occur when T is sufficiently small and H = 0 and 
this leads to an ambiguity in the value of magnetization at these state 
parameter values. It is a major challenge of statistical mechanics to predict 
and explain phase transitions. 

An important feature of thermodynamic systems is that the properties we 
are interested in are independent of shape and size at least when we are 
looking at intensive properties such as pressure, temperature, density, free-
energy per site (and not total energy, volume, etc.). This will allow us to let 
the statistical mechanical model of our system to become "infinitely large." 
This is called "taking the thermodynamic limit (T.L.)" and it is required to 
explain phase transitions. This is the thermodynamic formalism referred to in 
the title of the book. 

We shall now discuss a typical lattice system, the Lenz-Ising model for 
ferromagnetism, and indicate some of the key issues to be resolved. The 
model is viewed as a collection of particles with spin on the lattice Zv, v =* 1, 
2, 3, where an element of II is called a site. A particle {/} can exist in one of 
two states ot: oif = + 1 if the spin is up and a,- = —1 if the spin is down. Let 
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Î2 = n,eZr{ + l, -1} which we view as a compact Hausdorf space when 
{ + 1, -1} is given the discrete topology. This is the set of possible configura
tions { = microscopic states} of the system. A typical element is denoted by 
a = {a,} where a, is the spin-slate at site {/}. A state is a probability measure 
on Q and elements of S (£2), the algebra of real-valued continuous functions 
on Ö, are called observables. Z" acts naturally as a group of homeomorphisms 
on Î2 and one can discuss the Z"-invariant states on S2. We denote this convex 
set by /. 

Let / be a. positive real number. {This is the ferromagnetic condition on the 
"exchange interaction/'} For each finite region À c Z"9 we define the interac
tion Hamiltonian, which is a function from QA to R, as follows: 

where aA E S2A = : II|€EA{ + 1,-1} and H G R is the magnitude of a homoge
neous magnetic field applied to the system. %A{oA) is the local energy of a 
configuration a such that or|A = aA. Since nature seems to prefer states which 
minimize energy, the above suggests spin alignment up is preferred if H » 0 
and spin alignment down is preferred if H < 0, but if H = 0 nature only 
prefers alignment, up or down! Roughly this ambiguity is the intuitive 
reason behind the phase transitions observed in ferromagnets for sufficiently 
low temperature and zero magnetic field. In any case the family of interaction 
Hamiltonian {%A} is the microscopic data out of which the thermodynamic 
properties of the system must be deduced. 

Given the family {%A} and a value T > 0 of absolute temperature, we 
define the corresponding family of partition functions {ZA(T, H)} as follows: 

ZA(T,H)-: 2 exp[-/}3CA{<xA}] 
<rAenA 

where /? = 1/kT and k = the Boltzmann constant. The partition functions 
contain all of the thermodynamic information for the system. In particular 
they are used to define the following families of thermodynamic objects: 

(1) The Gibbs ensemble on fiA which is a probability measure on fiA 

indexed by T and H and is defined by: 

yA(T, H){aA} « : Z?(T,H)e-*x^h 
(2) the free-energy per site which is defined by: 

fA(T,H)=: - InZ A ( r , / f ) / j8 |A | 

where |A| = the number of sites in A. 
Skipping over the technicalities of what the precise meaning of "liin^.^," 

is, the main mathematical problems for our system are: 
(A) Describe the measures on $2 obtained as thermodynamic limits of the 

{yA(T9 H)} i.e. y is such a measure if there exists a sequence An -* 71 such 
that "limAw_z,YA(r, ƒƒ)"= y. Actually to obtain a satisfactory answer one 
must introduce more general Gibbs ensembles which include "boundary 
conditions." The convex closure KTH of the thermodynamic limits of such 
measures are called Gibbs states for our system at temperature T and 
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magnetic field H. In general these will correspond to the equilibrium states of 
our systems. 

(B) Show that limA_>z,/A(r, H) exists, independent of how A-»Z", and 
describe its convexity and analytic properties. This is the free-energy per site 
f(T, H) for our system. 

(C) What is the relation between KTH and the regularity properties of ƒ at 
(T, H)1 For example, in our case KTH reduces to a point iff ƒ is analytic at 
(T, H). We say a phase transition occurs at (T, H) if ƒ is not analytic at 
(T, H). 

One can classify the results applicable to general lattice models into 
roughly three groups. The first group contains general results which will apply 
to a large class of interactions for which the Lenz-Ising model would be a 
very special case. For example for a large class of lattice systems whose 
interactions are not too long range, one can define Gibbs states and a 
free-energy (called pressure with book under review) as above. Typical general 
results that one can prove are: (i) the Gibbs states form a Choquet simplex 
which implies that arbitrary Gibbs states have unique integral decompositions 
into extremal Gibbs states (= pure phases); (ii) Gibbs states are characterized 
by the DLR (= Dobrushin-Lanford-Ruelle) equations which shed consider
able light on the structure of the measures; (iii) one can characterize Z"-in-
variant Gibbs states in terms of a variational principle involving the free-en
ergy and entropy; (iv) various conditions involving correlations, etc. can be 
given which are equivalent to the Gibbs states reducing to a point. 

The second group of results requires some special conditions on the 
interaction. The ferromagnetic condition / > 0 on the Lenz-Ising model is a 
typical example. Examples of such results are the Peierls' argument proving 
the existence of phase transitions for a large class of ferromagnetic systems 
when H = 0 and at sufficiently low temperature and the Lee-Yang theorem 
which proves the analyticity of f(T, H)9 H ^ 0 for another large class of 
ferromagnetic systems. Thus for these systems phase transitions will not occur 
when H ^ 0. The third group of results are explicit calculation of various 
thermodynamic functions. This can only be done for a very limited number 
of models which does include the Lenz-Ising model with v = 1 or 2. The case 
where v = 2 is the famous Onsager calculation of the free energy at zero 
magnetic field. 

We now turn to the book under review. The author is one of the leading 
researchers in mathematical statistical mechanics and is eminently qualified 
to write a definitive book on the foundations of the statistical mechanics of 
lattice systems. The book consists of seven chapters plus appendices. The first 
four chapters contain results which belong to the first group discussed above. 
Most of the general theorems one could hope for are proved for classical 
lattice systems on 71 provided their interactions are not "too long-ranged." 
Chapter 5 restricts itself to translation-invariant lattice systems on Z with a 
slightly stronger decay condition placed on the interactions. The results in 
this chapter belong more to the second group of results rather than the first. 
In particular these results can be said to be definitive. The ergodic-theoretic 
properties of the equilibrium states with respect to the action of Z on fl are 
completely described and the pressure is real analytic in the interaction 
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parameters. {The actual analyticity statement is more sophisticated since the 
interactions are parametrized by an infinite dimensional Banach space.} The 
proofs in Chapters 1-5 are elegant and complete but sometimes rather 
demanding of the reader. 

In Chapter 6 the formalism of the first four chapters is partially extended to 
compact metrizable spaces with a Z"-action. An interesting wedding between 
the statistical mechanical formalism and topological dynamics is achieved. In 
Chapter 7 the richer formalism of Chapter 5 is extended to certain Z-actions 
on Smale spaces. Most detailed proofs in the last two chapters are omitted 
but complete references are given. Exercises, some of them quite difficult, are 
given at the end of each chapter. There are also complete bibliographical 
notes at the end of each chapter. 

This is a beautiful but austere book. It is very much in the spirit of the 
Bourbaki treatise. We must compare this impression with the statement of the 
editor in the general preface to this Encyclopedia. It states: "Clarity of 
exposition, accessibility to the nonspecialist (italics added), and a thorough 
bibliography are required of each author." If a person can learn a subject for 
the first time by reading Bourbaki, then perhaps that person can learn the 
statistical mechanics of lattice systems by reading this book. In this reviewer's 
opinion most people will most profitably read Bourbaki and/or this book at 
the culmination of the learning process not at the beginning. 
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My first actual conversation with Mordell took place early in the 1960's, 
when we were introduced (by L. C. Young, I believe) in the lounge of the 
Mathematics Research Center in Madison, Wisconsin. Always interested in 
the work of young mathematicians-a phrase that applied to me then-Mordell 
asked about my research interests. To my answer he responded with surprise 
(possibly feigned, it occurred to me later; in any event the point is the same), 
saying in effect-I don't recall the exact words-"modular functions? I thought 
that was all settled years ago!" 

That no mathematician, not even a Mordell in jest, could respond that way 
today is a measure of the extraordinary resurgence of interest that the field 


