Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Four-dimensional topology: an introduction


Author: Richard Mandelbaum
Journal: Bull. Amer. Math. Soc. 2 (1980), 1-159
MSC (1970): Primary 14J10, 14J25, 32J15, 55A10, 57A15, 57A50, 57C25, 57C35, 57C45, 57D05, 57D10, 57D15, 57D60, 57D65, 57D80, 57E25; Secondary 55A25, 55A35, 57A10, 57D20, 57D40, 57D55
DOI: https://doi.org/10.1090/S0273-0979-1980-14687-X
MathSciNet review: 551752
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [Ax 1] J. W. Alexander, Note on Riemann spaces, Bull. Amer. Math. Soc. 26 (1920), 370-377.
  • [Ax 2] J. W. Alexander, On the subdivision of a 3-space by a polyhedron, Proc. Nat. Acad. Sci. U.S.A. 10 (1924), 6-8.
  • [At 1] S. Akbulut, On 2-dimensional homology classes of 4-manifolds, Math. Proc. Cambridge Philos. Soc. 82 (1977), 99-110. MR 433476
  • [At 2] S. Akbulut, On representing homology classes of 4-manifolds, Invent. Math. 49 (1978), 193-198. MR 515653
  • [At 3] S. Akbulut, Private communication.
  • Selman Akbulut and Robion Kirby, An exotic involution of 𝑆⁴, Topology 18 (1979), no. 1, 75–81. MR 528237, https://doi.org/10.1016/0040-9383(79)90015-6
  • Selman Akbulut and Robion Kirby, Mazur manifolds, Michigan Math. J. 26 (1979), no. 3, 259–284. MR 544597
  • Selman Akbulut and Robion Kirby, Branched covers of surfaces in 4-manifolds, Math. Ann. 252 (1979/80), no. 2, 111–131. MR 593626, https://doi.org/10.1007/BF01420118
  • [AK 4] S. Akbulut and R. Kirby, A simply connected 4-manifold with b2 = 22 and σ = 16 (preprint).
  • [AK 5] S. Akbulut and R. Kirby, Private communication.
  • [AF] A. Andreotti and T. Frankel, The 2nd Lefschetz Theorem on hyperplane sections, Global Analysis, Princeton Univ. Press, Princeton, N. J., 1969, pp. 1-20. MR 271106
  • [AC] J. J. Andrews and M. L. Curtis, Knotted 2-spheres in the 4-sphere, Ann. of Math. (2) 70 (1959), 565-571. MR 107239
  • [Bak] A. Bak, The computation of surgery groups of odd torsion groups, Bull. Amer. Math. Soc. 80 (1974), 1113-1116. MR 494156
  • [Bd] D. Barden, h-cobordisms between 4-manifolds, Lecture notes, Cambridge Univ., 1964.
  • [BE] I. Berstein and L. Edmonds, The degree and branch set of a branched covering, Invent Math. 45 (1978), 213-220. MR 474261
  • [Bord] J. M. Boardman, Some embeddings of 2-spheres in 4-manifolds, Proc. Cambridge Philos. Soc. 60 (1964), 354-356. MR 160241
  • [BH] J. Boéchat and A. Haefliger, Plongements Differentiables des variétés orientes de dimension 4 dans R7, Essays on Topology and Related Topics, Springer, New York, 1970, pp. 156-166. MR 270384
  • [Bom] E. Bombieri, Canonical models of surfaces of general type, Publ. Math. Inst. Hautes Études Sci. 42 (1973), 447-495. MR 318163
  • [Bo] W. W. Boone, The word problem, Ann. of Math. (2) 70 (1959), 207-265. MR 179237
  • [BHP] W. W. Boone, W. Haken and V. Poénaru, On recursively unsolvable problems in topology and their classification, Cont. to. Math. Logic (Hanover Coll. 1966), pp. 37-74, North-Holland, Amsterdam, 1968. MR 263090
  • [Br 1] William Browder, Surgery on simply-connected manifolds, Ergebnisse der Math., Band 65, Springer-Verlag, Berlin and New York, 1972. MR 358813
  • [Br 2] William Browder, Embedding smooth manifolds, Proc. Internat. Congr. Math., Moscow, 1966, Izdat. "Mir", 1968, pp. 712-719. MR 238335
  • [Br 3] William Browder, Manifolds and Homotopy Theory, Manifolds-Amsterdam 1970, Lecture Notes in Math., vol. 197, Springer-Verlag, Berlin and New York, 1971, pp. 17-35. MR 278312
  • [Br 4] William Browder, Diffeomorphisms of 1-connected manifolds, Trans. Amer. Math. Soc. 128 (1967), 155-163. MR 212816
  • [BLL] W. Browder, J. Levine and G. R. Livesay, Finding a boundary for an open manifold, Amer. J. Math. 87 (1965), 1017-1028. MR 189046
  • [Brwn] E. H. Brown, Abstract homotopy theory, Trans. Amer. Math. Soc. 119 (1968), 79-85. MR 182970
  • [Bron] M. Brown, A proof of the generalized Schoenflies theorem, Bull. Amer. Math. Soc. 66 (1960), 74-76. MR 117695
  • [Ca 1] S. S. Cairns, The manifold smoothing problem, Bull. Amer. Math. Soc. 67 (1961), 237-238. MR 124064
  • [Ca 2] S. S. Cairns, Introduction of a Riemannian geometry on a triangulable 4-manifold, Ann. of Math. (2) 45 (1944), 218-219. MR 10272
  • [Ca 3] S. S. Cairns, Homeomorphisms between topological manifolds and analytic manifolds, Ann. of Math. (2) 41 (1940), 796-808. MR 2538
  • J. W. Cannon, Shrinking cell-like decompositions of manifolds. Codimension three, Ann. of Math. (2) 110 (1979), no. 1, 83–112. MR 541330, https://doi.org/10.2307/1971245
  • [Cap 1] Sylvain E. Cappell, A splitting theorem for manifolds, Invent. Math. 33 (1976), 69-170. MR 438359
  • [Cap 2] Sylvain E. Cappell, On connected sums of manifolds, Topology 13 (1974), 395-400. MR 358793
  • [Cap 3] Sylvain E. Cappell, Superspinning and knot complements, Topology of Manifolds, Markham, Chicago, Ill., 1970, pp. 358-383. MR 276972
  • [Cap 4] Sylvain E. Cappell, Manifolds with fundamental group a generalized free product. I, Bull. Amer. Math. Soc. 80 (1974), 1193-1198. MR 356091
  • [Cap 5] Sylvain E. Cappell, Unitary nilpotent groups and hermitian K-theory, Bull. Amer. Math. Soc. 80 (1974), 1117-1122. MR 358815
  • [CLS] S. Cappell, R. Lashof and J. Shaneson, A splitting theorem and the structure of 5-manifolds, Istituto Nazionale di Alta Matematica, Symposia Mathematica, Vol. 10, Academic Press, 1972, pp. 47-58. MR 365586
  • [CS 1] S. Cappell and J. Shaneson, On four dimensional surgery and applications, Comment. Math. Helv. 46 (1971), 500-528. MR 301750
  • [CS 2] S. Cappell and J. Shaneson, Some new four-manifolds, Ann. of Math. (2) 104 (1976), 61-72. MR 418125
  • [CS 3] S. Cappell and J. Shaneson, Invariants of 3-manifolds, Bull. Amer. Math. Soc. 81 (1975), 559-562. MR 367967
  • [CS 4] S. Cappell and J. Shaneson, Branched cyclic coverings, Ann. of Math. Studies, No. 84, Princeton Univ. Press, Princeton, N. J., 1975, pp. 165-173. MR 380815
  • [CS 5] S. Cappell and J. Shaneson, The codimension two placement problem and homology equivalent manifolds, Ann. of Math. (2) 99 (1974), 277-348. MR 339216
  • [CS 6] S. Cappell and J. Shaneson, Fundamental groups, Γ-groups, and codimension two sub-manifolds, Comment Math. Helv. 51 (1976), 437-446. MR 436159
  • [CS 7] S. Cappell and J. Shaneson, Submanifolds of codimension two and homology equivalent manifolds, Ann. Inst. Fourier (Grenoble) 23 (1973), 19-30. MR 346798
  • [CS 8] S. Cappell and J. Shaneson, Piecewise linear embeddings and their singularities, Ann. of Math. (2) 103 (1976), 163-228. MR 407859
  • [CS 9] S. Cappell and J. Shaneson, On the classification of singularities and immersions, Ann. of Math. (2) 103 (1976), 163-228. MR 407859
  • [CS 10] S. Cappell and J. Shaneson, Totally spineless manifolds, Illinois J. Math. 21 (1977), 231-239. MR 442946
  • Sylvanin E. Cappell and Julius L. Shaneson, Embeddings and immersions of four-dimensional manifolds in 𝑅⁶, Geometric topology (Proc. Georgia Topology Conf., Athens, Ga., 1977), Academic Press, New York-London, 1979, pp. 301–303. MR 537736
  • [CS 12] S. Cappell and J. Shaneson, There exist inequivalent knots with the same complement, Ann. of Math. (2) 103 (1976), 349-353. MR 413117
  • [CS 13] S. Cappell and J. Shaneson, Topological knots and knot cobordism, Topology 12 (1973), 33-40. MR 321099
  • [Cas 1] A. J. Casson, Lectures on A-manifolds (Lectures given at Cambridge University 1976), Private notes.
  • [Cas 2] A. J. Casson, Lecture at Institute for Advanced Study, 1976.
  • [Cas 3] A. J. Casson, Private communication.
  • A. J. Casson and C. McA. Gordon, On slice knots in dimension three, Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976) Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc., Providence, R.I., 1978, pp. 39–53. MR 520521
  • [Cerf 1] J. Cerf, Sur les diffeomorphismes de la sphère de dimension trois4 = 0), Lecture Notes in Math., vol. 53, Springer-Verlag, Berlin and New York, 1968. MR 229250
  • [Cerf 2] J. Cerf, Groupes d'automorphismes et groupes de difféomorphismes des variétés compactes de dimension 3, Bull. Soc. Math. France 87 (1959), 319-329. MR 116351
  • [CR 1] P. E. Conner and F. Raymond, Deforming homotopy equivalences to homeomorphisms in aspherical manifolds, Bull. Amer. Math. Soc. 83 (1977), 36-85. MR 467777
  • [CR 2] P. E. Conner and F. Raymond, Actions of compact Lie groups on aspherical manifolds, Topology of Manifolds (Proc. Inst., Univ. of Georgia, 1969), Markham, Chicago, Ill., 1970, pp. 227-264. MR 271958
  • [CR 3] P. E. Conner and F. Raymond, Holomorphic Seifert fiberings, Proc. Second Conf. on Compact Transformation Groups, Part II, Lecture Notes in Math., vol. 299, Springer-Verlag, Berlin and New York, 1972, pp. 109-123. MR 646079
  • [Con] J. H. Conway, An enumeration of knots and links and some of their algebraic properties, Computational Problems in Abstract Algebra, Pergamon, Oxford, 1970, pp. 329-358. MR 258014
  • [Crg] R. Craggs, Stable equivalence in and surgery presentations for 3-manifolds (preprint).
  • M. Dehn, Über die Topologie des dreidimensionalen Raumes, Math. Ann. 69 (1910), no. 1, 137–168 (German). MR 1511580, https://doi.org/10.1007/BF01455155
  • Pierre Deligne, Le groupe fondamental du complément d’une courbe plane n’ayant que des points doubles ordinaires est abélien (d’après W. Fulton), Bourbaki Seminar, Vol. 1979/80, Lecture Notes in Math., vol. 842, Springer, Berlin-New York, 1981, pp. 1–10 (French). MR 636513
  • [Del 2] P. Deligne, Le groupe fondamental du complement d'une courbe plane n'ayant que des points doubles ordinaires est abelian, Séminaire Bourbaki, November 1979.
  • [Durf] A. Durfee, 14 characterizations of rational double points (to appear).
  • [Ed 1] R. D. Edwards, The double suspension of a certain homology 3-spheres is S5, Notices Amer. Math. Soc. 22 (1975), Abstract #75 T-G33.
  • [Ed 2] R. D. Edwards, Shrinking cell-like decompositions of manifolds (to appear).
  • [EK] J. Eells and N. H. Kuiper, An invariant for certain smooth manifolds, Ann. Mat. Pura Appl. (4) 60 (1962), 93-110. MR 156356
  • [ENR] F. Enriques, Sulla construzione delle funzioni algebriche di due variabili..., Ann. Mat. Pura Appl. IV s. Vol. I. (1923), 185-198.
  • [EP] D. B. A. Epstein, Linking spheres, Proc. Cambridge Philos. Soc. 56 (1960), 215-219. MR 117740
  • [Fenn] R. Fenn, On Dehn's lemma in 4 dimensions, Bull. London Math. Soc. 3 (1971), 79-81. MR 285011
  • Roger Fenn and Colin Rourke, On Kirby’s calculus of links, Topology 18 (1979), no. 1, 1–15. MR 528232, https://doi.org/10.1016/0040-9383(79)90010-7
  • [Fin 1] R. Fintushel, Circle actions on simply-connected 4-manifolds, Trans. Amer. Math. Soc. 230 (1977), 147-171. MR 458456
  • Ronald Fintushel, Classification of circle actions on 4-manifolds, Trans. Amer. Math. Soc. 242 (1978), 377–390. MR 496815, https://doi.org/10.1090/S0002-9947-1978-0496815-7
  • [FP] R. Fintushel and S. P. Pao, Identification of certain 4-manifolds with group actions (preprint). MR 501042
  • [Ford] L. Ford, Automorphic functions, 2nd ed., Chelsea, New York, 1951.
  • [Fox] R. H. Fox, A quick trip through knot theory, Topology of 3-Manifolds and Related Topics, Prentice-Hall, Englewood Cliffs, N. J., 1962, pp. 120-167. MR 140099
  • [Frk] D. Franks, The signature Mod 8, Comment. Math. Helv. 48 (1973), 520-524. MR 328959
  • [Fr 1] M. Freedman, Knot theory and 4-dimensional surgery (to appear).
  • Michael Hartley Freedman, A fake 𝑆³×𝑅, Ann. of Math. (2) 110 (1979), no. 1, 177–201. MR 541336, https://doi.org/10.2307/1971257
  • [FK] M. Freedman and A. Kirby, Geometric proof of Rohlin's theorem, Proc. Sympos. Pure. Math. vol. 32, Amer. Math. Soc., Providence, R. I., 1978, pp. 85-97.
  • William Fulton, On the fundamental group of the complement of a node curve, Ann. of Math. (2) 111 (1980), no. 2, 407–409. MR 569076, https://doi.org/10.2307/1971204
  • S. Bloch, I. Dolgachev, and W. Fulton (eds.), Algebraic geometry, Lecture Notes in Mathematics, vol. 1479, Springer-Verlag, Berlin, 1991. MR 1181200
  • William Fulton and Johan Hansen, A connectedness theorem for projective varieties, with applications to intersections and singularities of mappings, Ann. of Math. (2) 110 (1979), no. 1, 159–166. MR 541334, https://doi.org/10.2307/1971249
  • [GS 1] D. Galewski and R. Stern, Classification of simplicial triangulations of topological manifolds, Bull. Amer. Math. Soc. 82 (1976), 916-918. MR 420637
  • David E. Galewski and Ronald J. Stern, Simplicial triangulations of topological manifolds, Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976) Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc., Providence, R.I., 1978, pp. 7–12. MR 520518
  • [GR] M. Gerstenhaber and O. Rothaus, The solution of sets of equations in groups, Proc. Nat. Acad. Sci. U.S.A. 48 (1962), 1531-1533. MR 166296
  • [Glk] H. Gluck, The embeddings of 2-spheres in the 4-spheres, Bull. Amer. Math. Soc. 67 (1967), 586-589. MR 131877
  • [Gor 1] C. McA. Gordon, Knots, homology spheres, and contractible 4-manifolds, Topology 14 (1975), 151-172. MR 402762
  • [Gor 2] C. McA. Gordon, Knots in the 4-sphere, Comment. Math. Helv. 51 (1976), 585-596. MR 440561
  • [Gor 3] C. McA. Gordon, Some higher-dimensional knots with the same homotopy groups, Quart. J. Math. Oxford Ser. (2) 24 (1973), 411-422. MR 326746
  • [GM] L. Guillou and A. Marin, Une extension d'un théorème de Rohlin sur la signature, C. R. Acad. Sci. Paris Sér A-B 285 (1977), A95-A98. MR 440566
  • John Harer, On handlebody structures for hypersurfaces in 𝐶³ and 𝐶𝑃³, Math. Ann. 238 (1978), no. 1, 51–58. MR 510306, https://doi.org/10.1007/BF01351453
  • [HC] J. Harer and A. Casson (to appear).
  • [HKK] J. Harer, A. Kas and R. C. Kirby (to appear).
  • [Hemp] J. Hempel, 3-manifolds, Ann. of Math. Studies No. 86, Princeton Univ. Press, Princeton, N.J.; Univ. of Tokyo Press, Tokyo, 1976. MR 415619
  • [Hd] A. Hilden, Every closed orientable 3-manifold is a 3-fold branched covering space of S3, Bull. Amer. Math. Soc. 80 (1974), 1243-1244. MR 350719
  • [Hi 1] M. W. Hirsch, Obstruction theories for smoothing manifolds and maps, Bull. Amer. Math. Soc. 69 (1963), 352-356. MR 149493
  • [Hi 2] M. W. Hirsch, On combinatorial submanifolds of differentiable manifolds, Comment. Math. Helv.36 (1961), 103-111. MR 133833
  • [Hi 3] M. W. Hirsch, PL embedding M4 into R7, Proc. Cambridge Philos. Soc. 61 (1965), 657-658. MR 182980
  • [Hi 4] M. W. Hirsch, On embedding differentiable manifolds in euclidean space, Ann. of Math. (2) 73 (1961), 566-571. MR 124915
  • [Hi 5] M. W. Hirsch, Immersions of manifolds, Trans. Amer. Math. Soc. 93 (1959), 242-276. MR 119214
  • [HM] M. W. Hirsch and B. Mazur, Smoothings of piecewise linear manifolds, Ann. of Math. Studies, No. 80, Princeton Univ. Press, Princeton, N. J.; Tokyo Univ. Press, Tokyo, 1974. MR 415630
  • [Hirz 1] F. Hirzebruch, Topological methods in algebraic geometry, Springer-Verlag, New York, 1966. MR 202713
  • [Hirz 2] F. Hirzebruch, W. D. Neumann and S. S. Koh, Differentiable manifolds and quadratic forms, Marcel Dekker, New York, 1971. MR 341499
  • [HS 1] W. Hsiang and J. L. Shaneson, Fake tori, Topology of Manifolds, Markham, Chicago, Ill., 1970, pp. 18-51. MR 281211
  • [HS 2] W. Hsiang and J. L. Shaneson, Fake tori, the annulus conjecture, and the conjectures of Kirby, Proc. Nat. Acad. Sci. U.S.A. 62 (1969), 687-691. MR 270378
  • [HSZ] W. Hsiang and R. Szczarba, On embedding surfaces in four manifolds, Proc. Sympos. Pure Math., vol. 22, Amer. Math. Soc. Providence, R. I., 1970, pp. 97-103. MR 339239
  • [Hus] D. Husemoller, Fiber bundles, McGraw-Hill, New York, 1966. MR 229247
  • William H. Jaco and Peter B. Shalen, Seifert fibered spaces in 3-manifolds, Mem. Amer. Math. Soc. 21 (1979), no. 220, viii+192. MR 539411, https://doi.org/10.1090/memo/0220
  • Steve J. Kaplan, Constructing framed 4-manifolds with given almost framed boundaries, Trans. Amer. Math. Soc. 254 (1979), 237–263. MR 539917, https://doi.org/10.1090/S0002-9947-1979-0539917-X
  • [Kas 1] A. Kas, Weierstrass normal forms and invariants of elliptic surfaces, Trans. Amer. Math. Soc. 225 (1977), 259-266. MR 422285
  • [Kas 2] A. Kas, On deformation types of regular elliptic surfaces, Complex Analysis and Algebraic Geometry, Cambridge Univ. Press, New York and London, 1977, pp. 107-112. MR 569686
  • [Kato] M. Kato, A concordance classification of PL homeomorphisms of Sp × Sq, Topology 8 (1969), 371-383. MR 256401
  • [KM 1] M. Kervaire and J. W. Milnor, On 2-spheres in 4-manifolds, Proc. Nat. Acad. Sci. U.S.A. 47 (1961), 1651-1657. MR 133134
  • [KM 2] M. Kervaire and J. W. Milnor, Groups of homotopy spheres. I, Ann. of Math. (2) 77 (1963), 504-537. MR 148075
  • [Kirb 1] R. C. Kirby, A calculus for framed links in S3, Invent. Math. 45 (1978), 35-56. MR 467753
  • Rob Kirby, Problems in low dimensional manifold theory, Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976) Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc., Providence, R.I., 1978, pp. 273–312. MR 520548
  • [Kirb 3] R. C. Kirby, Some conjectures about four-manifolds, Actes Congrès Internat. Math., 1970, Tome 2, pp. 79-84. MR 431179
  • [Kirb 4] R. C. Kirby, Stable homeomorphisms and the annulus conjecture, Ann. of Math. (2) 77 (1963), 504-537. MR 242165
  • [Kirb 5] R. C. Kirby, Private notes.
  • [KS 1] R. C. Kirby and L. C. Siebenmann, Foundational essays on topological manifolds, smoothing and triangulation, Princeton Univ. Press, Princeton, N. J., 1977. MR 645390
  • [KS 2] R. C. Kirby and L. C. Siebenmann, Some theorems on topological manifolds, Manifolds-Amsterdam 1970, Lecture Notes in Math., vol. 197, Springer-Verlag, Berlin and New York, 1971, pp. 1-7. MR 283807
  • [Kob] K. Kobayashi, On a homotopy version of the 4-dimensionaI Whitney lemma, Math. Sem. Notes Kobe Univ. 5 (1977), 109-116. MR 458431
  • [K 1] K. Kodaira, On compact analytic surfaces. I, II, III, Ann. of Math. (2) 71 (1960), 111-152; 77 (1963), 563-626; 78 (1963), 1-40. MR 132556
  • [K 2] K. Kodaira, On the structure of compact complex analytic surfaces. I, II, IV, Amer. J. Math. 86 (1964), 781-798; 88 (1966), 682-721; 90 (1968), 1048-1066.
  • [K 3] K. Kodaira, On homotopy K 3 surfaces. Essays on Topology and Related Topics, Springer, New York, 1970, pp. 58-69. MR 262545
  • [Lg] S. Lang, Introduction to differentiable manifolds, Interscience, New York, 1962. MR 155257
  • [Lash] R. Lashof, The immersion approach to triangulation and smoothing, Proc. Adv. Study Inst. Alg. Top. Aarhus 1970, 282-355. MR 276976
  • [LR] R. Lashof and M. Rothenberg, Triangulation of manifolds. I, II, Bull. Amer. Math. Soc. 75 (1969), 750-757. MR 247631
  • [LR 2] R. Lashof and M. Rothenberg, Microbundles and smoothing, Topology 3 (1965), 357-388. MR 176480
  • [LS] R. Lashof and J. Shaneson, Smoothing four-manifolds, Invent. Math. 14 (1971), 197-210. MR 295368
  • [LS 2] R. Lashof and J. Shaneson, Classification of knots in codimension two, Bull. Amer. Math. Soc. 75 (1969), 171-175. MR 242175
  • [LP] F. Laudenbach and V. Penaru, A note on 4-dimensional handlebodies, Bull. Soc. Math. France 100 (1972), 337-347. MR 317343
  • [Lf] H. Laufer, Normal two dimensional singularities, Ann. of Math. Studies no. 61, Princeton Univ. Press, Princeton, N. J., 1968. MR 320365
  • [Law 1] T. Lawson, Trivializing h-cobordisms by stabilization, Math. Z. 156 (1977), 211-215. MR 478179
  • Terry Lawson, Trivializing 5-dimensional ℎ-cobordisms by stabilization, Manuscripta Math. 29 (1979), no. 2-4, 305–321. MR 545047, https://doi.org/10.1007/BF01303633
  • [Law 3] T. Lawson, Decomposing 5-manifolds as doubles, Tulane Univ., 1977 (preprint). MR 515791
  • [Lees] J. Alexander Lees, The surgery obstruction groups of C.T.C. Wall, Advances in Math. 11 (1973), 113-156. MR 324713
  • [Lef] S. Lefschetz, L analysis situs et la géometrie algébrique, Paris, 1924.
  • [Lick] W. B. R. Lickorisch, A representation of orientable combinatorial 3-manifolds, Ann. of Math. (2) 76 (1962), 531-540. MR 151948
  • [Lom] S. J. Lomonaco, The homotopy groups of knots. I, II (to appear).
  • [McM] D. R. McMillan, A criterion for cellularity in a manifold, Ann. of Math. (2) 79 (1964), 327-337. MR 161320
  • [Mah] M. Mahowald, The order of the image of the J-homomorphism, Bull. Amer. Math. Soc. 76 (1970), 1310-1313. MR 270369
  • Richard Mandelbaum, Irrational connected sums and the topology of algebraic surfaces, Trans. Amer. Math. Soc. 247 (1979), 137–156. MR 517689, https://doi.org/10.1090/S0002-9947-1979-0517689-2
  • Richard Mandelbaum, On the topology of elliptic surfaces, Studies in algebraic topology, Adv. in Math. Suppl. Stud., vol. 5, Academic Press, New York-London, 1979, pp. 143–166. MR 527248
  • Richard Mandelbaum, Special handlebody decompositions of simply connected algebraic surfaces, Proc. Amer. Math. Soc. 80 (1980), no. 2, 359–362. MR 577774, https://doi.org/10.1090/S0002-9939-1980-0577774-X
  • Richard Mandelbaum, Decomposing analytic surfaces, Geometric topology (Proc. Georgia Topology Conf., Athens, Ga., 1977), Academic Press, New York-London, 1979, pp. 147–217. MR 537731
  • [Man 5] R. Mandelbaum, (to appear).
  • [MM 1] R. Mandelbaum and B. Moislezon, On the topological structure of non-singular algebraic surfaces in CP3, Topology 15 (1976), 23-40. MR 405458
  • [MM 2] R. Mandelbaum and B. Moislezon, On the topology of algebraic surfaces, Trans. Amer. Math. Soc. (to appear).
  • [MM 3] R. Mandelbaum and B. Moislezon, Numerical link invariants (preprint).
  • [Mas] W. S. Massey, Proof of a conjecture of Whitney, Pacific J. Math. 31 (1969), 143-156. MR 250331
  • [Mt 1] Y. Matsumoto, An elementary proof of Rohlin's Signature Theorem and its extension by Guillou and Marin, Notes, IAS Geometric Topology Seminar.
  • [Mt 2] Y. Matsumoto, A 4-manifold which admits no spine, Bull. Amer. Math. Soc. 81 (1975), 467-470. MR 380814
  • [Mt 3] Y. Matsumoto, Some wild embeddings of S1 × S (to appear).
  • Yukio Matsumoto, Secondary intersectional properties of 4-manifolds and Whitney’s trick, Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976) Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc., Providence, R.I., 1978, pp. 99–107. MR 520526
  • Yukio Matsumoto and Gerard A. Venema, Failure of the Dehn lemma on contractible 4-manifolds, Invent. Math. 51 (1979), no. 3, 205–218. MR 530628, https://doi.org/10.1007/BF01389914
  • [Mat] T. Matumoto, Variétés simpliciales d'homologie et variétés topologiques metrisable, Thèse Univ. de Paris-Sud Orsay, 1976.
  • [Mz] B. Mazur, A note on some contractible 4-manifolds, Ann. of Math. (2) 73 (1961), 221-228. MR 125574
  • [M 1] J. Milnor, On simply-connected 4-manifolds, Symp. Internat, de Top. Alg. (Mexico 1956) Mexico, 1958, pp. 122-128. MR 103472
  • [M 2] J. Milnor, Differentiable manifolds which are homotopy spheres (Unpublished Notes, Princeton, 1959).
  • [M 3] J. Milnor, A procedure for killing the homotopy groups of differentiate manifolds, Proc. Sympos. Pure Math., vol. 3, Amer. Math. Soc. Providence, R. I., 1961, pp. 39-55. MR 130696
  • [M 4] J. Milnor, Lectures on the h-cobordism theorem, Princeton Mathematical Notes, 1965. MR 190942
  • [M 5] J. Milnor, Whitehead torsion, Bull. Amer. Math. Soc. 72 (1966), 358-426. MR 196736
  • [MH] J. Milnor and J. Husemoller, Symmetric bilinear forms, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 73, Springer-Verlag, Berlin and New York, 1973, pp. 1-147. MR 506372
  • [MK] J. Milnor and M. Kervaire, Bernoulli numbers, homotopy groups and a Theorem of Rohlin, Proc. Internat. Congr. Math. Edinburgh, 1958, pp. 454-458. MR 121801
  • [MS] J. Milnor and J. D. Stasheff, Characteristic classes, Ann. of Math. Studies no. 76, Princeton Univ. Press, Princeton, N. J., 1974. MR 440554
  • [My] Y. Miyaoka, On the Chern numbers of surfaces of general type, Invent. Mathematicae 42 (1977), 225-237. MR 460343
  • [Moise] E. Moise, Affine structures on 3-manifolds, Ann. of Math. (2) 56 (1952), 96-114. MR 48805
  • T. Matumoto and L. Siebenmann, The topological 𝑠-cobordism theorem fails in dimension 4 or 5, Math. Proc. Cambridge Philos. Soc. 84 (1978), no. 1, 85–87. MR 489573, https://doi.org/10.1017/S0305004100054918
  • [Msh] B. Moishezon, Complex surfaces and connected sums of complex projective planes, Lecture Notes in Math., vol. 603, Springer-Verlag, Berlin and New York, 1977. MR 491730
  • [Mont 1] J. M. Montesinos, A representation of closed-orientable 3-manifolds as 3-fold branched coverings of S3, Bull. Amer. Math. Soc. 80 (1974), 845-846. MR 358784
  • José María Montesinos, 4-manifolds, 3-fold covering spaces and ribbons, Trans. Amer. Math. Soc. 245 (1978), 453–467. MR 511423, https://doi.org/10.1090/S0002-9947-1978-0511423-7
  • José María Montesinos, Heegaard diagrams for closed 4-manifolds, Geometric topology (Proc. Georgia Topology Conf., Athens, Ga., 1977), Academic Press, New York-London, 1979, pp. 219–237. MR 537732
  • [Mont 4] J. M. Montesinos, 3 manifolds as 3-fold branched coverings of S3, Quart. J. Math. Oxford Ser. (2) 27 (1976), 85-97. MR 394630
  • [Most] G. D. Mostow, Strong rigidity of locally symmetric spaces, Ann. of Math. Studies, no. 78, Princeton Univ. Press, Princeton, N. J., 1973. MR 385004
  • [Mun 1] J. Munkres, Elementary differential topology, Ann. of Math. Studies no. 54 Princeton Univ. Press, Princeton, N. J., 1966. MR 198479
  • [Mun 2] J. Munkres, Concordance is equivalent to smoothability, Topology 5 (1966), 371-389. MR 214081
  • [Nor] R. A. Norman, Dehr's Lemma for certain 4-manifolds, Invent. Math. 7 (1969), 143-147. MR 246309
  • [N] S. P. Novikov, Homotopically equivalent smooth manifolds. I (in Russian), Izv. Akad. Nauk. SSR Ser. Mat. 28 (2) (1964), 265-374; English Transl., Amer. Math. Soc. Transl. (2) no. 48 (1965), 271-396. MR 162246
  • [Orl] P. Orlik, Seifert manifolds, Lecture Notes in Math., vol. 291, Springer-Verlag, Berlin and New York, 1972. MR 426001
  • [OR 1] P. Orlik and F. Raymond, Actions of the torus on 4-manifolds. I, Trans. Amer. Math. Soc. 152 (1970), 531-559. MR 268911
  • [OR 2] P. Orlik and F. Raymond, Actions of the torus on 4-manifolds. II, Topology 13 (1974), 89-112. MR 348779
  • [Papa 1] C. D. Papakyriakopoulos, On Dehn's lemma and the asphericity of knots, Ann. of Math. (2) 66 (1957), 1-26. MR 90053
  • [Papa 2] C. D. Papakyriakopoulos, On solid tori, Proc. London Math. Soc. 7 (1957), 281-299. MR 87944
  • [Pao 1] P. Pao, The topological structure of 4-manifolds with effective torus action. I, Trans. Amer. Math. Soc. 227 (1977), 279-317. MR 431231
  • [Pao 2] P. Pao, The topological structure of 4-manifolds with effective torus action. II, Illinois J. Math. 21 (1977), 883-894. MR 455000
  • [Pit] H. Pittie, Complex and almost complex manifolds, Complex Analysis and its Applications, Vol. III Internat. Atomic Energy Agency, Vienna, 1976, pp. 121-131. MR 492365
  • [Pon] L. S. Pontryagin, Smooth manifolds and their applications in homotopy theory, Amer. Math. Soc. Transl. (2) no. 11 (1959), 1-114. MR 115178
  • [Q] F. Quinn, A stable Whitney trick in dimension four (to appear).
  • [Ram] C. P. Ramanujam, A topological characterization of the affine plane as an algebraic variety, Ann. of Math. (2) 94 (1971), 69-88. MR 286801
  • [Ran] A. Ranicki, On algebraic L-theory. Parts I, II, Proc. London Math. Soc. 27 (1973), pp. 101-125; 126-158; Part III, Lecture Notes in Math., vol. 343, Springer-Verlag, Berlin and New York, 1973.
  • [Reid] M. Reid, Article On Bogomolov's Theorem (preprint).
  • [Rlf] D. Rolfsen, Knots and links, Lecture Notes, Univ. of British Columbia, Vancouver, 1975. MR 515288
  • [R 1] V. A. Rohlin, New results in the theory of 4-dimensional manifolds, Dokl. Akad. Nauk SSSR 84 (1952), 221-224. (Russian) MR 52101
  • [R 2] D. Rolfsen, Two-dimensional submanifolds of four-dimensional manifolds, Funktional. anal, i Priložen. 5 (1971), 48-60 (Russian); English transl., Functional Anal. Appl. 5 (1971), 39-48. MR 298684
  • [R 3] D. Rolfsen, Proof of Gudkov's hypothesis, Funkcional. anal. i Priložen. 6 (1972), 62-64 (Russian); English Transl., Functional Anal. Appl. 6 (1972), 136-138. MR 296070
  • [RS] C. P. Rourke and B. J. Sanderson, Introduction to piecewise linear topology, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 69, Springer-Verlag, Berlin and New York, 1972. MR 350744
  • [Rb] J. H. Rubinstein, Private correspondence.
  • [Rd] L. Rudolph, A Morse function for a surface in CP3, Topology 14 (1975), 301-303. MR 405463
  • Eugénia César de Sá, A link calculus for 4-manifolds, Topology of low-dimensional manifolds (Proc. Second Sussex Conf., Chelwood Gate, 1977) Lecture Notes in Math., vol. 722, Springer, Berlin, 1979, pp. 16–30. MR 547450
  • [Sch 1] M. Scharlemann, Constructing strange manifolds with the dodecahedral space, Duke Math. J. 43 (1976), 33-40. MR 402760
  • [Sch 2] M. Scharlemann, Equivalence of 5-dimensional S-cobordisms, Proc. Amer. Math. Soc. 53 (1975), 508-510. MR 380838
  • [Sch 3] M. Scharlemann, Transversality theories at dimension 4, Invent. Math. 33 (1976), 1-14. MR 410756
  • H. Seifert, Topologie Dreidimensionaler Gefaserter Räume, Acta Math. 60 (1933), no. 1, 147–238 (German). MR 1555366, https://doi.org/10.1007/BF02398271
  • [Ser 1] J. P. Serre, Cours d'arithmétique, Presses Universitaires de France.
  • [Ser 2] J. P. Serre, Formes bilinéaires symétriques entières à discriminant ± 1, Séminaire Henri Cartan 14e Année (Topologie differentielle), 1961/62, exp. 14-15. MR 160229
  • [Sev 1] Francesco Severi, Intorno ai punti doppi improprî di una superficie generale dello spazio a quattro dimensioni, e a' suoi punti tripli apparenti, Rend. Cire. Mat. Palermo 15 (1901), 33-51; correction, ibid., p. 160.
  • [Sev 2] Francesco Severi, Sulla deficienza delia serie caratteristica di un sistema lineare di curve appartenenti ad una superficie algebrica, Atti. Reale Accad. Lincei Rend. (5) 12 (1903), no. 2, 250-257.
  • [Shaf 1] I. R. Shafarevitch, Basic algebraic geometry, Springer-Verlag, Berlin and New York, 1975.
  • [Shaf 2] I. R. Shafarevitch, Algebraic surfaces, Proc. Steklov Inst. Math. 75 (1965), Amer. Math. Soc., Providence, R. I., 1967. MR 190143
  • [Sh 1] J. L. Shaneson, Non-Simply connected surgery and some results in low dimensional topology, Comment. Math. Helv. 45 (1970), 333-352. MR 275444
  • [Sh 2] J. L. Shaneson, On non-simply connected manifolds, Proc. Sympos. Pure Math., vol. 22, Amer. Math. Soc. Providence, R. I., 1970, pp. 221-229. MR 358816
  • [Sh 3] J. L. Shaneson, Wall's surgery obstruction groups for G × Z, Ann. of Math. (2) 90 (1969), 296-334. MR 246310
  • [Sh 4] J. L. Shaneson, Hermitian K-theory in Topology, Lecture Notes in Math., vol. 343, "Hermitian K-Theory and geometric applications" 1-41 Springer (1973). MR 394704
  • [Sb 1] L. C. Siebenmann, Disruption of low-dimensional handlebody theory by Rohlin's Theorem, Topology of Manifolds, Markham, Ill., 1970, pp. 57-76. MR 271955
  • [Sb 2] L. C. Siebenmann, Are nontriangulable manifolds triangulable? Topology of Manifolds, Markham, Ill., 1970, pp. 77-84. MR 271956
  • [Sb 3] L. C. Siebenmann, Topological manifolds, Proceedings Internat. Congr. Mathematics, Nice (1970), vol. 2, Gauthier-Villars, 1971, pp. 143-163. MR 423356
  • [Sb 4] L. C. Siebenmann, Lecture at the Institute of Advanced Study, 1977.
  • [Sb 5] L. C. Siebenmann, Amorces de la chirugie en dimension quatre: Un S3 × R exotique, [d'après A. H. Casson and M. H. Freedman] Séminaire Bourbaki 1978/79 Feb. 1979, pp. 536-01 to 536-25.
  • [Sm] S. Smale, Generalized Poincaré's conjecture in dimensions greater than 4, Ann. of Math. (2) 74 (1961), 391-406. MR 137124
  • [Spr 1] E. H. Spanier, Algebraic topology, McGraw-Hill, New York, 1966. MR 210112
  • [Spr 2] E. H. Spanier, On the homology of Kummer manifolds, Proc. Amer. Math. Soc. 7 (1956), 155-160. MR 87188
  • [St 1] J. R. Stallings, Notes on polyhedral topology, Tata Institute of Fundamental Research, Bombay, 1968.
  • [St 2] J. R. Stallings, On the loop theorem, Ann. of Math. (2) 72 (1960), 12-19. MR 121796
  • [St 3] J. R. Stallings, Group theory and three dimensional manifold, Yale Univ. Press, New Haven, Conn., 1972.
  • [Stn] N. Steenrod, The topology of fibre bundles, Princeton Univ. Press, Princeton, N. J., 1951. MR 39258
  • [S 1] D. Sullivan, Thesis, Princeton, 1965.
  • [S 2] D. Sullivan, Triangulating and smoothing homotopy equivalences and homeomorphisms, Geometric Topology Seminar Notes, Princeton Univ. 1967.
  • [Thm] R. Thom, Quelques propriétés globales des variétés differentiates, Comment. Math. Helv. 28 (1954), 17-86. MR 61823
  • [Tr] A. G. Tristram, Some cobordism invariants for links, Proc. Cambridge Philos. Soc. 66 (1969), 251-264. MR 248854
  • [Wald] F. Waldhausen, On irreducible 3-manifolds which are sufficiently large, Ann. of Math. (2) 87 (1968), 56-88. MR 224099
  • [Wa 1] C. T. C. Wall, Diffeomorphisms of 4-manifolds, J. London Math. Soc. 39 (1964), 131-140. MR 163323
  • [Wa 2] C. T. C. Wall, On simply-connected 4-manifolds, J. London Math. Soc. 39 (1964), 141-149. MR 163324
  • [Wa 3] C. T. C. Wall, Surgery on compact manifolds, Academic Press, London and New York, 1970. MR 431216
  • [Wa 4] C. T. C. Wall, Foundations of algebraic L-theory, Algebraic K-theory. III, Lecture Notes in Math., vol. 343, Springer-Verlag, Berlin and New York, 266-300. MR 357550
  • [Wa 5] C. T. C. Wall, On homotopy tori and the annulus theorem, Bull. London Math. Soc. 1 (1969), 95-97. MR 242164
  • [Wa 6] C. T. C. Wall, Locally flat PL submanifolds with codimension two, Proc. Cambridge Philos. Soc. 63 (1967), 5-8. MR 227993
  • [Wa 7] C. T. C. Wall, Some L groups of finite groups, Bull. Amer. Math. Soc. 39 (1973), 526-529. MR 335605
  • [Wa 8] C. T. C. Wall, On the orthogonal groups of unimodular quadratic forms, Math. Ann. 147 (1962), 328-338. MR 138565
  • [Wlc] A. Wallace, Homology theory on algebraic varieties, Pergamon Press, New York, 1958. MR 93522
  • [W 1] J. H. C. Whitehead, A certain open manifold whose group is unity, Quart. J. Math. 6 (1935), 268-279.
  • [W 2] J. H. C. Whitehead, On simply connected 4-dimensional polyhedra, Comment. Math. Helv. 22 (1949), 48-92. MR 29171
  • [Whit 1] H. Whitney, The self-intersection of a smooth n-manifold in 2n-space, Ann. of Math. (2) 45 (1944), 220-246. MR 10274
  • [Whit 2] H. Whitney, On the topology of differentiable manifolds, Lectures in Topology, Michigan Univ. Press, Ann Arbor, Mich., 1940. MR 5300
  • [Y] S. T. Yau, Calabi's conjecture and some new results in algebraic geometry, Proc. Nat. Acad. Sci. U.S.A. 74 (1977), 1798-1799. MR 451180
  • [Zar 1] O. Zariski, An introduction to the theory of algebraic surfaces, (2nd ed.), Lecture Notes in Math., vol. 83, Springer-Verlag, Berlin and New York, 1972. MR 344246
  • [Zar 2] O. Zariski, Introduction to the problem of minimal models in the theory of algebraic surfaces, Publ. Math. Soc. Japan, no. 4, Math. Soc. Japan, Tokyo, 1958. MR 97403
  • Oscar Zariski, On the Problem of Existence of Algebraic Functions of Two Variables Possessing a Given Branch Curve, Amer. J. Math. 51 (1929), no. 2, 305–328. MR 1506719, https://doi.org/10.2307/2370712
  • Oscar Zariski, A theorem on the Poincaré group of an algebraic hypersurface, Ann. of Math. (2) 38 (1937), no. 1, 131–141. MR 1503330, https://doi.org/10.2307/1968515
  • [Z 1] E. C. Zeeman, Seminar on combinatorial topology, Mimeo, I.H.E.S., Bures-Sur-Yvette and Univ. of Warwick, 1963.
  • [Z 2] E. C. Zeeman, The Poincaré conjecture for N > 5, Topology of 3-manifolds, Prentice-Hall, Englewood Cliffs, N. J., 1962, pp. 198-203. MR 140113
  • [Z 3] E. C. Zeeman, On the dunce hat, Topology 2 (1964), 341-358. MR 156351
  • [Z 4] E. C. Zeeman, Twisting spun knots, Trans. Amer. Math. Soc. 115 (1965), 471-495. MR 195085

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1970): 14J10, 14J25, 32J15, 55A10, 57A15, 57A50, 57C25, 57C35, 57C45, 57D05, 57D10, 57D15, 57D60, 57D65, 57D80, 57E25, 55A25, 55A35, 57A10, 57D20, 57D40, 57D55

Retrieve articles in all journals with MSC (1970): 14J10, 14J25, 32J15, 55A10, 57A15, 57A50, 57C25, 57C35, 57C45, 57D05, 57D10, 57D15, 57D60, 57D65, 57D80, 57E25, 55A25, 55A35, 57A10, 57D20, 57D40, 57D55


Additional Information

DOI: https://doi.org/10.1090/S0273-0979-1980-14687-X

American Mathematical Society