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appeared in the last couple of years concerning the finite element approxima
tion, the few pages devoted to this subject seem to be either superfluous, or 
completely inadequate even as an introduction to this topic. On the other 
hand, some topics seem to stop short of mentioning some important recent 
results. For example, the only recent results on continuation of solutions 
reported in this book seem to be restricted to the theorems of G. H. Hue and 
M. Protter. 

It was a surprise to find that Gàrding's inequality was never mentioned in a 
book on elliptic partial differential equations. 

Some minor misprints exist. For example, Carleman's name is misspelled 
on p. 212. Also, the spelling of all Russian names leaves a lot to be desired. 
Olga Ladyzenskaja is spelled as "Ladyshenkaja" in the index. Lavrentjev is 
spelled "Lavrentieff" on p. 40 and "Lavrentjev" in the index. Lopatinskiï is 
spelled in two different ways on consecutive lines in the index. The index 
seems to be a minor disaster area. Rellich's theorem is supposed to be on 
p. 379. It turns out to be on p. 369. The estimate of Astrahancev is supposed 
to be on p. 366, but it actually is quoted on p. 367. The reviewer selected 
10 items at random. Four turned out to be misnumbered in the index. On the 
positive side, this book leaves a general impression of competence, it is well 
written, contains a lot of information, and a vast amount of bibliography. 
Each chapter contains references and a list of additional references, plus 
remarks concerning the additional references. For example, the chapter on 
elliptic boundary value problems contains 116 references, and the chapter on 
singular integral equations contains 119 references. The reviewer recommends 
this book as a supplement to courses in partial differential equations and as a 
useful addition to the library of any analyst. 
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Modular forms are generalizations of the trigonometric functions which 
have proved to be very useful in number theory, physics, and geometry. In 
their most obscene generality they go by the name of automorphic forms, and 
this name refers to functions on symmetric spaces, such as the Poincaré-
Lobachevskii upper half plane H, which satisfy certain differential equations 
(usually those of Cauchy and Riemann) and exhibit invariance properties 
under a discrete group of isometries of H, such as the modular group SL(2, Z) 
of 2 X 2 matrices of determinant one and integer entries, acting on H by 
fractional linear transformation. Number theorists, as will be seen, are often 
interested in congruence subgroups such as 

T0(N) - { (* *) e SL(2, Z)|c =s 0 (mod JV)}. 
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One of the oldest and most useful examples of a modular form is one of 
Jacobi's theta functions: 

0(z) = 2 exp(77/>i2z), for z in H. 

Theta is easily seen (using the Poisson summation formula) to have the 
invariance properties: 0(z + 2) = 9{z) and 0(—1/z) = (z/i)l/20(z). And 
0(2z) can be shown to be a modular form for T0(4). Many of the first 
applications of theta were in physics. Fourier, for example, needed theta to 
solve the heat equation, as is demonstrated in the book of Dym and McKean 
[7, p. 64], Another reason that Jacobi's four basic theta functions are dis
cussed in physics texts such as Morse and Feshbach [17, Vol. I, pp. 430-432; 
Vol. II, p. 1251] is that they provide computable expressions for the elliptic 
integrals which give conformai mappings solving Dirichlet problems in the 
plane. Theta functions also appear in the solutions by Euler, Lagrange and 
Poisson of two special cases of the problem of describing the motion of a 
solid body rotating about a fixed point. The third known case of this problem 
was solved by Sonya Kovalevsky in work for which she was awarded the Prix 
Bordin in 1888. Her paper (Acta Math. 12 (1889), 177-232) shows that she 
needed generalizations of elliptic integrals known as abelian integrals and 
therefore theta functions of more than one variable. Many other physical 
problems lead to these hairier integrals and thus to the higher degree theta 
functions which were studied by Riemann, Weierstrass, Hermite and others in 
the 1800s. The higher degree theta functions live on the symmetric space Hn 

of the symplectic group. This space Hn of symmetric n X n complex matrices 
with positive imaginary part is known as Siegel's upper half space as a result 
of Siegel's important work on the subject. The reader can find a nice 
treatment of these things in Siegel's books [23]. The theta functions on Hn are 
also intrinsic to Siegel's remarkable work on quadratic forms as developed in 
papers 20, 22, 26 of [22, Vol. I]. This work has recently been connected with 
quantum mechanics via the Segal-Shale-Weil representation discussed by 
Cartier in [3, pp. 361-386] and Wallach in [27]. Evidently as great a mathe
matician as Picard told Sonya Kovalevsky in 1886 that he was sceptical that 
theta functions on H2 "can be useful in the integration of certain differential 
equations". But 90 years later in the paper of Dubrovin, Matveev, and 
Novikov (Russian Math. Surveys 31 (1976), 59-146), which begins with the 
quote from Picard, theta functions are used to solve the Korteweg-de Vries 
type partial differential equations. It often helps to think of algebraic geome
try and Riemann surface theory to understand these things. Algebraic geome
ters view theta functions as providing projective embeddings of abelian 
varieties. This point of view is expressed in Baily's paper [3, pp. 306-311], for 
example. The book of Lang under review does not mention theta functions, 
perhaps because this vast subject demands a book of its own. And certainly 
Lang has treated some of these matters in other books. 

Perhaps the main reason that number theorists love theta functions is that 
number theorists are enamored of zeta functions. The connection between the 
two types of functions is exemplified by the following Mellin transform 
result-a result used by Riemann during the 1850s in his work on the zeta 



208 BOOK REVIEWS 

function that bears his name (if Re s > 1): 

A(s) - 2*-*r(')*(2') - f V " W>) - O 4r, fto - S *-*. 

Riemann showed how to use this formula to obtain the analytic continuation 
of £ (s) to a meromorphic function in the complex s-planc with a simple pole 
at s = 1. The idea is to use Jacobi's transformation formula 0(1/z) = 
(z/i)x/29(z) to deal with the integral over small j>, where the series for theta 
converges very slowly. As a result, Riemann found a formula for A(s) as a 
sum of 2 pole terms and a series of incomplete gamma functions. The latter 
series converges exponentially faster than the original Dirichlet series for f(s\ 
to an entire function of s. Moreover the transformation formula for theta 
implies that zeta satisfies the functional equation A(s) = A(| — s). This 
method has also been used since the early part of this century in crystal 
physics to compute potentials of crystal lattices-the potentials being realized 
as Epstein zeta functions. More details on this can be found in the reviewer's 
paper [26]. It was one of Heckc's original impressive contributions to alge
braic number theory to note that the same sort of argument works for the 
Dedckind zeta function of an algebraic number field, once one finds the 
appropriate theta function of several variables. 

In the 1930s Hecke made the discovery (see his lectures [10]) that 
Riemann's idea can be turned around and vastly generalized. The Mellin 
transform and its inverse thus provide a dictionary (called the Hecke corre
spondence) translating from zeta and L-functions of number theory to 
modular forms for congruence subgroups and conversely. Weil revitalized this 
subject with his 1967 paper [28]. Number theorists arc interested in the 
Dedekind zeta function because its residue at s = 1 contains the basic 
invariants of the number field. Thus many open problems in algebraic 
number theory are often approached by trying to figure out what the 
Dedekind zeta function is doing near s = 1. This, in turn, leads one (as Stark 
described in [24]) to investigate the Artin L-function of a representation of a 
Galois group of an extension of number fields. The big open problem here is 
to prove Artin's conjecture that the Artin L-function is entire if the repre
sentation does not contain the unit representation. Suppose one knew the 
truth of Artin's conjecture for the Artin L-function of RRV with R a fixed 
irreducible 2-dimensional representation of a Galois group G of a number 
field K/Q, and for all 1-dimensional representations Rx of G. Then the 
Hecke-Wcil-Langlands theory would say that the inverse Mellin transform of 
the Artin L-function for R (times its gamma factors) is a modular form of 
weight 1 for some congruence subgroup. Deligne and Serre have also proved 
a converse result. Thus recent progress on Artin's conjecture involves modu
lar forms. References arc the Corvallis conference lectures on base change [4], 
Gelbart's paper in [6, Vol. VI, pp. 241-276], Serrc's paper in [8, pp. 193-268], 
Tate's talk on Hilbcrt's 9th problem [5, pp. 311-322]. 

The preceding was an attempt to give a number theorist's explanation for 
the fact that Lang's book concerns in large part modular forms for con
gruence subgroups of SL(2, Z). (However, we should note that the book does 
not really treat the Hecke-Weil correspondence between modular forms and 
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Dirichlet series except in the case SL(2, Z).) A complex analyst might wish 
instead to look at arbitrary subgroups T of SL(2, C), since all analytic 
functions whose Riemann surface is D can in fact be realized as automorphic 
forms on some D/T. But a number theorist wants to look at the arithmetic 
groups like T0(N) and the specific modular forms which help to solve 
number-theoretic problems. 

Another important example of a modular form is the Eisenstein series 

Gk(z) - 2 ( w + * ) ~ \ * - 4, 6, 8 , . . . , 
(m,/i)*=(0,0) 

which satisfies 

Gk(^Tl) = (CZ + rf)*G*(')> f o r ( c £) * SL(2, Z). 

Thus Gk is a modular form of weight k for SL(2, Z). For some mysterious 
reason Lang creates this function in Chapter 1 of his book but chooses not to 
name it until the last page. The Eisenstein series G4 and G6 are building 
blocks for all modular forms for SL(2, Z). For example, they can be com
bined to get the modular invariant y first constructed by Dedekind and Klein 
in the 1870s: 

j « 1728 (60G4)
3/A, with A - (60G4)

3 - 27(140G6)
2. 

The invariant j maps J//SL(2, Z) conformally one-to-one onto C. It is called 
the Hauptmodul, since every modular form of weight one (or modular 
function) is a rational function of j . A reference for these things is Serre's 
book [18]. The mapping given by y can be used to obtain a quick proof of the 
small Picard theorem. Moreover, y characterizes elliptic curves and its special 
values yield class fields of imaginary quadratic fields, as is shown in the 
seminar on complex multiplication [2]. Class fields are extensions of number 
fields with abelian Galois group. Their theory was developed in the early part 
of this century by Takagi, Artin, Hasse et al. The theory includes a reciproc
ity law due to Artin, which vastly generalizes the quadratic reciprocity law of 
Gauss. Hubert's 12th problem asks for a generalization of the construction of 
class fields of imaginary quadratic fields via modular forms-a construction 
which would include an explicit version of the reciprocity law for class fields 
over any base field. This problem has stimulated much of the work on 
modular forms and higher dimensional generalizations such as Hilbert and 
Siegel modular forms. Heckc's first papers with their unfortunate errors 
sought a theory for real quadratic fields. The main problem seems to be that 
the appropriate generalization of the discriminant function, A(z) from the 
denominator of y, does not exist. The most success on Hilbert's 12th problem 
has no doubt been achieved by Shimura (see his book [20]). Langland's article 
in [5] gives his view of the subject. There is quite a different approach to 
Hubert's 12th problem due to Stark, an approach which we will discuss later. 
A related application of modular forms comes in the solution of polynomial 
equations. For example, consider the famous result of Hcrmite, Kronecker, 
and Brioschi on the solution of the general equation of 5th degree via 
modular forms. It should also be noted that Hecke himself obtained a proof 
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of the quadratic reciprocity law for number fields, using the transformation 
properties of theta functions. 

There are three more themes in the subject that must be 
mentioned-Fourier expansions, Euler products, and values of L-functions 
corresponding to modular forms by Mellin transform. A modular form f(z) 
will be periodic in the real part of z. Thus it must have a Fourier expansion, 
which is assumed by definition to look like: 

Az) = 2 an exp(2irmz). 

The form ƒ is called a cusp form if the constant term a0 = 0. The term cusp 
form indicates that the function will vanish at the cusp at infinity in the 
fundamental domain for H/SL(2, Z), illustrated in Lehner's book [13, p. 5]. 
One can show that the discriminant A(z) is a cusp form for SL(2, Z), which 
does not vanish at any finite point in H (the useful property for construction 
of j). The Fourier coefficients an are often very interesting integers, for a 
number theorist's obscure tastes anyway. For example, if ƒ — Gk> the Eisen-
stein series, then a0 involves J(k) and an, n > 0, involves the divisor function: 

The fact that G4 and G6 can be normalized to have integer coefficients is 
important for Swinnerton-Dyer's recent theory of modular forms mod/?, 
obtained by reducing the Fourier coefficients modulo p. Swinnerton-Dyer 
was seeking an explanation for Ramanujan's congruences involving the 
Ramanujan numbers r(n) in 

A(Z)(2TT)~12 = 2 T(*)exp(27rwz), 

A(z) from the denominator of j . The congruences relate the r(n) and divisor 
functions modulo powers of 2, 3, 5, 7, 23 and 691 (see Swinnerton-Dyer's 
article [6, III, pp. 1-56]). Lang's Chapters 10 and 11 are somewhat motivated 
by the desire to know why these congruences do not occur for large primes. 
There are also connections with Artin L-functions and Serre's work on/>-adic 
modular forms. Before leaving the subject of Fourier coefficients, it seems 
imperative to mention that recently Deligne proved an old conjecture of 
Ramanujan which says that \r(n)\ < nll/2a0(n)9 using the Weil conjectures on 
zeta functions of certain varieties over finite fields. In fact Deligne's proof of 
the Weil conjectures includes an argument motivated by some of Rankin's 
work on the Ramanujan conjecture. This is described by Katz in [5, pp. 
286-288]. 

There is still more to say about Hecke's correspondence between modular 
forms and Dirichlet series via the Mellin transform and its inverse. Hecke 
also found a way of characterizing the modular forms corresponding to 
Dirichlet series with Euler products analogous to that known by Euler: 

£(*)- II {\-p-'Y\ Res>l . 
p prime 

Hecke defined some linear operators now called Hecke operators on the finite 
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dimensional vector spaces of modular forms of weight k for SL(2, Z) and 
similar groups. And he showed that the eigenfunctions of the Hecke operators 
are exactly the modular forms 

f(z) = 2 an exp(27wiz) 
n>0 

such that the corresponding Dirichlet series Lj(s) = 2W > J ann~s has an Euler 
product. Lang discusses this in Chapters 2 and 3. Note for example that the 
Eisenstein series has to be an eigenfunction of the Hecke operators since 
LGk(s) = Ç(s)Ç(s + 1 — k). The story of Hecke operators for congruence 
subgroups r0(JV) was first fully told by Atkin and Lehner in 1970. One goal is 
to find a basis for the vector spaces of modular forms for T0(N) in eigenforms 
of the Hecke operators prime to N. Lang treats this in Chapters 7 and 8. 

The final theme in the study of modular forms concerns values of the 
corresponding L-functions at integer arguments. Such results go back to 
Euler, who found that the values of the Riemann zeta function at even 
integers are given by: 

2U2n) - - (27r)2n(- \)nB2J (2n)U for n - 1, 2, 3 , . . . , 

where Bn denotes the nth Bernoulli number (which is rational). There is a 
proof of this formula in Chapter 10 of Lang's book, with a generalization to 
Dirichlet L-functions in Chapter 14. Recently Shintani [21] has generalized 
this result to L-functions of totally real algebraic number fields, by cleverly 
obtaining a higher dimensional analogue of the complex variable proof in 
Lang's Chapter 14. An old and related result from algebraic number theory 
says that the residue of the Dedekind zeta function at s = 1 involves the 
product of the class number and the regulator (a determinant involving 
logarithms of the fundamental units of the number field). Motivated by 
results of this sort, Stark has made conjectures in [25] which say that the 
values of L-functions at s = 1, under certain hypotheses on the characters 
involved, contain generators of class fields, thus providing another method of 
attack upon Hubert's 12th problem. There are also a vast array of conjectures 
of Lichtenbaum in [14] connecting values of zeta functions, étale cohomology, 
and algebraic A -̂theory. Lang's book looks at the study of some L-values by 
viewing them as periods of modular forms, following work of Eichler, 
Shimura, and Manin. It is proved, for example, that ratios of certain L-values 
in the critical strip lie in the field generated by the Fourier coefficients of the 
corresponding modular form. This fits into a general philosophy of Deligne, 
described by Zagier in [6, Vol. VI, pp. 118-120]. Lang also considers a/?-adic 
interpretation of the values of Dirichlet L-functions, using ideas of Iwasawa, 
Manin, and Mazur. The motivation from cyclotomic fields can be found in 
Iwasawa's book [12]. 

Now that we have attempted to express the basic examples and themes in 
the subject of Lang's book, we should perhaps consider the book itself. The 
text should be a useful reference for anyone wishing to jump into the agitated 
waters mapped out by the 1970s conferences at Antwerp and Bonn and 
published in [6], since it is the only text on modular forms that covers many 
of the necessary topics. The average reader would probably also have to look 
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at the books of Hecke, Lehner, and Shimura [10], [13], [20], and some readers 
would need the dozen or so other texts on the subject. We should thank the 
author for writing another valuable text and hope that more are to come. 

The reviewer wishes that the author had included a discussion of nonholo
morphic modular forms, which were first studied by Maass in 1949. However, 
some of these forms appear in Lang's SL(2, R). An example is the Eisenstein 
series on H, defined by: 

Es{z) = E ys\rnz + n\~2s
9 Re s > 1. 

(m,*) ^(0,0) 

This function is an eigenfunction for the non-Euclidean Laplace operator on 
H and is clearly invariant under SL(2, Z). In fact Es(z) is an Epstein zeta 
function, which makes it the Mellin transform of a theta function (up to 
gamma factors). Therefore it has an analytic continuation to all s in C using 
Riemann's idea. The Eisenstein series play a leading role in harmonic analysis 
on H/SL(2, Z) and Selberg's trace formula, developed by Selberg in [19]. A 
special case of the trace formula is discussed by Zagier in an appendix to 
Lang's book (but see the correction in [6, Vol. VI, pp. 171-173]). The reader 
interested in a unified treatment of holomorphic and nonholomorphic modu
lar forms could look at the Tata lecture notes [15] of Maass, for example. In 
particular, Hecke's correspondence between modular forms and Dirichlet 
series, as well as Hecke operators, are discussed in these notes, in a uniform 
way for both cases. There are, of course, many more open questions in the 
nonholomorphic case than in the holomorphic. In particular, no one has been 
able to find an example of a nonholomorphic cusp form; that is, an eigen
function of the non-Euclidean Laplace operator on H, invariant under 
SL(2, Z), and having zero constant term in its Fourier expansion. Yet one 
knows that there are infinitely many such cusp forms-the discrete spectrum 
of the Laplacian on if/SL(2, Z). One might say that the existence of the 
discrete spectrum is as mysterious as the existence of quanta in quantum 
mechanics. However there are tables of eigenvalues of the Laplacian on 
H/SL(29 Z) in existence. In fact, such a table, which was made by H. Haas at 
Heidelberg, includes the eigenvalue 

X « s(s - 1), with s - 0.5 + 14.13473 /, 
a number very familiar to aficionados of the Riemann hypothesis. Recently 
several people have noticed that the Haas table also contains zeros of the 
Dirichlet L-f unction formed with the Kronecker symbol (-3/*). D. Hejhal 
has found that these eigenvalues which are zeros of zeta and L(s, (-3/*)) are 
actually spurious, so that this eigenvalue interpretation does not prove the 
Riemann hypothesis. These conjectural connections with the Riemann hy
pothesis may have motivated Selberg in his work on the trace formula. There 
are also interesting connections between holomorphic and nonholomorphic 
modular forms and the representations of SL(2, R), as is discussed in the 
book of Gclfand, Graev, and Piatetskii-Shapiro [9]. Finally we should note 
that one can use the Hecke-Maass correspondence in the nonholomorphic 
case, to deduce the existence of nonholomorphic cusp forms for T0(N)9 

N ¥* 1, from the functional equations of Hecke L-f unctions for real quadratic 
fields. 
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It is certainly unreasonable to wish that Lang had included a discussion of 
modular forms for symmetric spaces of higher rank such as the Siegel upper 
half space Hn. Experience with an unfinished manuscript about harmonic 
analysis on symmetric spaces has taught the reviewer only too well the 
difficulties of discussing modular forms for the general linear and symplectic 
groups in a reasonably brief volume. However, it appears that many higher 
dimensional problems in number theory, physics, and geometry are begging 
for the right knowledge of higher rank automorphic forms (despite Hermite's 
remarks quoted earlier). The general situation is described in Borel's article 
[3, pp. 199-210] and Baily's text [1]. The special cases of the symplectic and 
general linear groups are treated in the books of Siegel and Maass [23], [16] 
and in some Göttingen lecture notes of U. Christian. However, the problem 
of generalizing Hecke's correspondence and its inverse to a mapping which 
takes Siegel modular forms to Dirichlet series in several variables with 
functional equations (via a higher dimensional Mellin transform) remained 
open as far as obtaining a converse was concerned. At least the problem was 
open until recently when Kaori Imai showed in [11] that harmonic analysis 
on ///SL(2, Z), which is often called Selberg's spectral resolution of the 
Laplacian, allows one to invert the higher dimensional Mellin transform 
correspondence for Siegel modular forms of degree 2 (i.e., on #2). The forms 
of higher degree living on H3, etc., require explicit and simple versions of 
harmonic analysis on SO(w)\SL(/*, R)/SL(«, Z), coming from work of Sel-
berg, Langlands, and Harish-Chandra. The study of Euler products for 
L-functions corresponding to Siegel modular forms has been made by 
Andrianov in [6, Vol. VI, pp. 325-338], using the theory of Hecke operators 
which was begun by Maass in the 1950s. This also connects with a general 
philosophy of Langlands, which was discussed, for example, at the CorvaUis 
conference [4]. One is reminded at this point of a remark in Morse and 
Feshbach [17, Vol. II, p. 1252]. Here the authors express their reluctance to 
leave the plane for higher dimensional problems. And indeed much less is 
understood in higher dimensions. But the time must certainly have arrived for 
several books on the subject, since Lehner said this already in 1964. 
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Georg Cantor, his mathematics and philosophy of the infinite, by Joseph Warren 
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A century and a half ago in 1831 Gauss, in a letter to Schumacher, wrote: 
"I protest against an infinite quantity as an actual entity; this is never allowed 
in mathematics. The infinite is only a manner of speaking." 

Forty-one years later Georg Cantor, a young mathematician at Halle, was 
studying the uniqueness problem for trigonometric series. In 1870 he had 
proven that if a real function ƒ was represented by a trigonometric series 
which converged for all x, then the series was necessarily unique; in fact, 
uniqueness was guaranteed even if the set of exceptional points, where 
convergence failed, was discrete. By the following year he had extended his 


