Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.


Full text of review: PDF   This review is available free of charge.
Book Information:

Author: T. A. Springer
Title: Invariant theory
Additional book information: Lecture Notes in Math., vol. 585, Springer-Verlag, Berlin, Heidelberg, New York, 1977, 111 pp., $8.00.

References [Enhancements On Off] (What's this?)

  • 1. G. Boole, Exposition of a general theory of linear transformations, Cambridge Math. J. 3 (1841), 1-20.
  • 2. C. Chevalley, Invariants of finite groups generated by reflections, Amer. J. Math. 67 (1955), 778-782. MR 72877
  • 3. J. Dieudonne and J. Carrell, Invariant theory old and new, Advances in Math. 4 (1970), 1-80. MR 255525
  • 4. S. S. Chern, Geometry of characteristic classes, Proc. of 13th Biennial Seminar, Canad. Math. Soc., 1972, pp. 1-40. MR 370613
  • 5. C. Fisher, The death of a mathematical theory, Arch. History Exact Sci. 3 (1966), 137-159. MR 202546
  • 6. R. Gardner, The fundamental theorem of vector relative invariants, J. Algebra 36 (1975), 314-318. MR 379518
  • 7. P. Gilkey, Curvature and the eigenvalues of the Laplacian for elliptic complexes, Advances in Math. 10 (1973), 344-382. MR 324731
  • 8. W. Haboush, Reductive groups are geometrically reductive, Ann. of Math. (2) 102 (1975), 67-83. MR 382294
  • 9. David Hilbert, Ueber die vollen Invariantensysteme, Math. Ann. 42 (1893), no. 3, 313–373 (German). MR 1510781, https://doi.org/10.1007/BF01444162
  • 10. D. Hilbert, Über die Theorie der Algebraischen Invarianten, International Mathematical Congress, Macmillan, New York, 1896, 116-124.
  • 11. J. E. Humphreys, Hilbert’s fourteenth problem, Amer. Math. Monthly 85 (1978), no. 5, 341–353. MR 498068, https://doi.org/10.2307/2321339
  • 12. D. Littlewood, Invariant thoery, tensors, and group characters, Phil. Trans. Royal Soc. 239 (1944), 305-365. MR 10594
  • 13. F. Meyer, Bericht über den gegenwärtigen Stand der Invariantentheorie, Jahresbericht der Deutschen Mathematiker-Vereinigung 1 (1890-1891).
  • 14. D. Mumford and T. Suominen, Introduction to the theory of moduli, Proc. of 5th Nordic Summer School, Wolters-Nordoff, Groningen, 1971, pp. 171-222. MR 437531
  • 15. V. K. Patodi, An analytic proof of the Riemann-Roch-Hirzebruch theorem for Kahler manifolds, J. Differential Geometry 5 (1971), 251-283. MR 290318
  • 16. C. Procesi, The invariant theory of n x n matrices, Advances in Math. 19 (1976), 306-381. MR 419491
  • 17. G. C. Rota and S. Roman, The umbral calculus, Advances in Math. 27 (1978), 95-188. MR 485417
  • 18. G. C. Rota, P. Doubilet and M. Stern, On the foundations of combinatorial theory. IX, Studies in Applied Math. 17 (1974), 185-216.
  • 19. J. Simons and S. S. Chern, Some cohomology classes in principal fiber bundles and their application to Riemannian geometry, Proc. Nat. Acad. Sci. U.S.A. 68 (1971), 791-794. MR 279732
  • 20. N. Sloane, Error connecting codes and invariant theory, Amer. Math. Monthly 84 (1977), 82-107. MR 424398
  • 21. R. Stanley, Magic labelings of graphs, symmetric magic squares, systems of parameters, and Cohen-Macaulay rings, Duke Math. J. 43 (1976), 511-531. MR 444514
  • 22. R. Stanley, Cohen-Macaulay rings and constructible polytopes, Bull. Amer. Math. Soc. 81 (1975), 133-155. MR 364231
  • 23. H. Weyl, David Hilbert and his mathematical work, Bull. Amer. Math. Soc. 50 (1944), 612-654. MR 11274
  • 24. H. Weyl, Invariants, Duke Math. J. 5 (1939), 489-502. MR 30
  • 25. H. Weyl, Classical groups, Princeton Univ. Press, Princeton, N. J., 1939.
  • 26. Hermann Weyl, On the Volume of Tubes, Amer. J. Math. 61 (1939), no. 2, 461–472. MR 1507388, https://doi.org/10.2307/2371513

Review Information:

Reviewer: Robert B. Gardner
Journal: Bull. Amer. Math. Soc. 2 (1980), 246-256
DOI: https://doi.org/10.1090/S0273-0979-1980-14739-4
American Mathematical Society