Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.


Full text of review: PDF   This review is available free of charge.
Book Information:

Author: V. I. Arnold
Title: Ordinary differential equations
Additional book information: translated from the Russian by Richard A. Silverman, MIT Press, Cambridge, Massachusetts, 1978, x + 280 pp., $8.95.

References [Enhancements On Off] (What's this?)

  • 1. S. Bancroft, J. K. Hale and D. Sweet, Alternative problems for nonlinear functional equations, J. Differential Equations 4 (1968), 40-56. MR 220118
  • 2. N. Chafee and E. F. Infante, A bifurcation problem for a nonlinear partial differential equation of parabolic type, C.D.S. Tech. Rep. 74-5, Lefschetz Center for Dynamical Systems, Brown Univ., 1974. MR 440205
  • 3. N. Chafee, Behavior of solutions leaving the neighborhood of a saddle point for a nonlinear evolution equation, J. Math. Anal. Appl. 58 (1977), 312-325. MR 445080
  • 4. C. C. Conley and R. Easton, Isolated invariant sets and isolating blocks. Trans. Amer. Math. Soc. 158 (1971), 35-61. MR 279830
  • 5. R. Easton, Regularization of vector fields by surgery, J. Differential Equations 10 (1971) 92-99. MR 315741
  • 6. H. Furstenberg, Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions, J. Analyse Math. 31 (1977), 204-256. MR 498471
  • 7. H. Furstenberg and B. Weiss, Topological dynamics and combinatorial number theory, J. Analyse Math. 34 (1978), 61–85 (1979). MR 531271, https://doi.org/10.1007/BF02790008
  • 8. H. Furstenberg and Y. Katznelson, An ergodic Szemerédi theorem for commuting transformations, J. Analyse Math. 34 (1978), 275–291 (1979). MR 531279, https://doi.org/10.1007/BF02790016
  • 9. J. K. Hale, Dynamical systems and stability, J. Math. Anal. Appl. 26 (1969), 39-59. MR 244582
  • 10. J. P. LaSalle, An invariance principle in the theory of stability, Int. Symp. on Diff. Eqs. and Dyn. Systems, J. K. Hale and J. P. LaSalle (eds.), Academic Press, New York, 1967, p. 277. MR 226132
  • 11. A. Liapunov, Problème général de la stabilité du mouvement, Ann. Sci. Toulouse 2 (1907), 203-474.
  • 12. B. J. Matkowsky, A simple nonlinear dynamic stability problem, Bull. Amer. Math. Soc. 76 (1970), 620-625. MR 257544
  • 13. J. Moser, Periodic orbits near an equilibrium and a theorem by A. Weinstein, Comm. Pure Appl. Math. 29 (1976), 727-747. MR 426052
  • 14. C. C. Pugh, On a theorem of P. Hartman, Amer. J. Math. 91 (1969), 363-369. MR 257533
  • 15. J. Roels, An extension to resonant case of Liapunov's theorem concerning the periodic solutions near a Hamiltonian equilibrium, J. Differential Equations 9 (1971), 300-324. MR 273155
  • 16. J. Roels, Families of periodic solutions near a Hamiltonian equilibrium when the ratio of 2 eigenvalues is 3, J. Differential Equations 10 (1971), 431-447. MR 294789
  • 17. D. S. Schmidt and D. Sweet, A unifying theory in determining periodic families for Hamiltonian systems at resonance, Tech. Rep. TR 73-3, Univ. of Maryland, 1973. MR 328221
  • 18. C. L. Siegel and J. Moser, Lectures on celestial mechanics, Springer-Verlag, New York, 1971. MR 502448
  • 19. A. Weinstein, Lagrangian submanifolds and Hamiltonian systems, Ann. Math. 98 (1973), 377-410. MR 331428
  • 20. A. Weinstein, Normal modes for nonlinear Hamiltonian systems, Invent. Math. 20 (1973), 47-57. MR 328222

Review Information:

Reviewer: Martin Braun
Journal: Bull. Amer. Math. Soc. 2 (1980), 514-522
DOI: https://doi.org/10.1090/S0273-0979-1980-14788-6
American Mathematical Society