Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Bifurcation and symmetry breaking in applied mathematics


Author: D. H. Sattinger
Journal: Bull. Amer. Math. Soc. 3 (1980), 779-819
MSC (1980): Primary 35B32, 35B35; Secondary 20C99, 76E15
DOI: https://doi.org/10.1090/S0273-0979-1980-14823-5
MathSciNet review: 578374
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. J. F. G. Auchmuty, Bifurcating waves, Bifurcation theory and applications in scientific disciplines (Papers, Conf., New York, 1977) Ann. New York Acad. Sci., vol. 316, New York Acad. Sci., New York, 1979, pp. 263–278. MR 556835
  • 2. J. F. G. Auchmuty and G. Nicholis, Dissipative structures, catastrophes, and pattern formation: a bifurcation analysis, Proc. Nat. Acad. Sci. U. S. A. 71 (1974), 2748-2751. MR 440204
  • 3. J. F. G. Auchmuty and G. Nicholis, Bifurcation analysis of reaction-diffusion equations. III, Chemical oscillations, Bull. Math. Biol. 38 (1976), 325-350. MR 454358
  • 4. T. B. Benjamin, Applications of topological degree theory to problems of hydrodynamic stability, Math. Proc. Cambridge Philos. Soc. 79 (1978), 373-392. MR 428914
  • 5. T. B. Benjamin, Bifurcation phenomena in steady flows of a viscous fluid. I. Theory, II. Experiments, Proc. Roy. Soc. London Ser. A 359 (1978), 1-26; 27-43. MR 495581
  • 6. J. L. Birman, Symmetry changes, phase transitions and ferroelectricity, Ferrolectricity, Elsevier, New York, 1967.
  • 7. F. Busse, The stability of finite amplitude cellular convection and its relation to an extremum principle, J. Fluid Mech. 30 (1967), 625-650.
  • 8. F. Busse, Patterns of convection in spherical shells, J. Fluid Mech. 72 (1975), 67-85.
  • 9. F. Busse, Mathematical problems of dynamo theory, Applications of Bifurcation Theory (P. Rabinowitz, ed.), Academic Press, New York, 1977. MR 452078
  • 10. A. Chenciner and G. Iooss, Bifurcations de tores invariants, Arch. Rational Mech. Anal. 69 (1979), no. 2, 109–198 (French). MR 521266, https://doi.org/10.1007/BF00281175
  • 11. D. Coles, Transition in circular Couette flow, J. Fluid Mech. 21 (1965), 385-425.
  • 12. G. B. Ermentrout and J. D. Cowan, Secondary bifurcation in neuronal nets, SIAM J. Appl. Math. 39 (1980), no. 2, 323–340. MR 588504, https://doi.org/10.1137/0139028
  • 13. G. B. Ermentrout and J. D. Cowan, A mathematical theory of visual hallucination patterns, Biol. Cybernet. 34 (1979), no. 3, 137–150. MR 547511, https://doi.org/10.1007/BF00336965
  • 14. M. Crandall and P. Rabinowitz, Bifurcation, perturbation of simple eigenvalues, and linearized stability, Arch. Rational Mech. Anal. 52 (1973), 161-180. MR 341212
  • 15. M. Crandall and P. Rabinowitz, The Hopf bifurcation theorem in infinite dimensions, Arch. Rational Mech. Anal. 67 (1977), 53-72. MR 467844
  • 16. J. Dieudonné, Foundations of modern analysis, Academic Press, New York, 1969. MR 349288
  • 17. P. R. Fenstermacher, H. L. Swinney and J. P. Gollub, Dynamical instabilities and the transition to chaotic Taylor vortex, J. Fluid Mech. 94 (1979), 103.
  • 18. P. Fife, The Bénard problem for general fluid dynamical equations and remarks on the Boussinesq approximation, Indiana Univ. Math. J. 20 (1970), 303-326. MR 269176
  • 19. Paul C. Fife, Mathematical aspects of reacting and diffusing systems, Lecture Notes in Biomathematics, vol. 28, Springer-Verlag, Berlin-New York, 1979. MR 527914
  • 20. J. P. Gollub and H. L. Swinney, Onset of turbulence in a rotating fluid, Phys. Rev. Letters 35 (1975), 921.
  • 21. M. Golubitsky and D. Schaeffer, A theory for imperfect bifurcation via singularity theory, Comm. Pure Appl. Math. 32 (1979), no. 1, 21–98. MR 508917, https://doi.org/10.1002/cpa.3160320103
  • 22. John Guckenheimer, The bifurcation of quadratic functions, Bifurcation theory and applications in scientific disciplines (Papers, Conf., New York, 1977) Ann. New York Acad. Sci., vol. 316, New York Acad. Sci., New York, 1979, pp. 78–85. MR 556824
  • 23. Hermann Haken, Laser theory, Springer-Verlag, Berlin, 1983. Reprint. MR 694694
  • 24. M. Hénon and Y. Pomeau, Two strange attractors with a simple structure, Turbulence and Navier-Stokes Equations, (R. Temam, ed.) Lecture Notes in Math., vol. 565, Springer-Verlag, Berlin and New York, 1975. MR 448436
  • 25. D. Henry, Geometric theory of semilinear parabolic equations, Univ. of Kentucky Lecture Notes, 1974.
  • 26. K. Hepp and E. H. Lieb, Phase transitions in reservoir-driven open systems with applications to lasers and superconductors, Helvetica Physica Acta 46 (1973), 574-603.
  • 27. M. Herschkowitz-Kaufman and T. Erneux, The bifurcation diagram of model chemical reactions, Bifurcation theory and applications in scientific disciplines (Papers, Conf., New York, 1977) Ann. New York Acad. Sci., vol. 316, New York Acad. Sci., New York, 1979, pp. 296–313. MR 556837
  • 28. E. Hopf, Abzweigung liner Periodischen Lösung eines Differential Systems, Berichten der Math.-Phys. Klasse der Sächisten Akademie der Wissenschaften zu Leipzig 94 (1942), 1-22.
  • 29. E. Hopf, A mathematical example displaying features of turbulence, Comm. Pure Appl. Math. 1 (1948), 303-322. MR 30113
  • 30. G. W. Hunt, Imperfection-sensitivity of semi-symmetric branching, Proc. Roy. Soc. London Ser. A 357 (1977), 193-211. MR 478963
  • 31. G. Iooss, Existence et stabilité de la solution périodique secondaire intervenant dans les problèmes d'évolution du type Navier-Stokes, Arch. Rational Mech. Anal. 47 (1972), 301-329. MR 346350
  • 32. G. Iooss, Bifurcation of maps and applications, North-Holland Mathematics Studies, vol. 36, North-Holland Publishing Co., Amsterdam-New York, 1979. MR 531030
  • 33. G. Iooss and D. Joseph, Bifurcation and stability of nT periodic solutions branching from T-periodic solutions at points of resonance, Arch. Rational Mech. Anal. 66 (1977), 135-172. MR 501154
  • 34. G. Iooss and D. D. Joseph, The behaviour of solutions lying on an invariant 2-torus arising from the bifurcation of a periodic solution, Applications of nonlinear analysis in the physical sciences (Bielefeld, 1979), Surveys Reference Works Math., vol. 6, Pitman, Boston, Mass.-London, 1981, pp. 92–114. MR 659692
  • 35. V. Iudovic, Stability of steady flows of viscous incompressible fluids, Soviet Physics Dokl. 10 (1965), 293-295.
  • 36. V. Iudovic, On the origin of convection, Prikl. Mat. Meh. 30 (1966), 1193-1199. MR 221816
  • 37. V. Iudovic, On the stability of self-oscillations of a liquid, Soviet Math. Dokl. 11 (1970), 1543-1546.
  • 38. V. Iudovic, Appearance of auto-oscillations in a fluid, Prikl. Mat. Meh. 35 (1971), 638-655. MR 381502
  • 39. M. V. Jaric and J. L. Birman, New algorithms for the Molien junctions, J. Math. Phys. 18 (1977), 1456-1458. MR 491924
  • 40. D. Joseph, Remarks about bifurcation and stability of quasi-periodic solutions which bifurcate from periodic solutions of the Navier-Stokes equations, Nonlinear Problems in the Physical Sciences and Biology, Lecture Notes in Math., vol. 322, Springer-Verlag, Berlin and New York, 1973.
  • 41. D. D. Joseph, Stability of fluid motions. I, II, Springer-Verlag, Berlin and New York, 1976. MR 449147
  • 42. D. D. Joseph and D. H. Sattinger, Bifurcating time periodic solutions and their stability, Arch. Rational Mech. Anal. 45 (1972), 75-109. MR 387844
  • 43. H. Kielhöfer, Stability and semilinear evolution equations in Hilbert space, Arch. Rational Mech. Anal. 57 (1974), 150-165. MR 442405
  • 44. J. P. Keener and H. B. Keller, Perturbed bifurcation theory, Arch. Rational Mech. Anal. 50 (1973), 159-175. MR 336479
  • 45. J. P. Keener, Perturbed bifurcation theory at multiple eigenvalues, Arch. Rational Mech. Anal. 56 (1974), 348-366. MR 355710
  • 46. K. Kirchgässner and H. Kielhöfer, Stability and bifurcation in fluid dynamics. Rocky Mountain J. Math. 3 (1973), 275-318. MR 319457
  • 47. K. Kirchgässner and P. Sorger, Branching analysis for the Taylor problem, Quart J. Mech. Appl. Math. 22 (1969), 183-209. MR 250555
  • 48. J. G. Kirkwood and E. Monroe, Statistical mechanics of fusion, J. Chem. Phys. 9 (1941), 514-526.
  • 49. E. L. Koschmieder, Benard convection, Advances in Chem. Phys. 26 (1974), p. 177.
  • 50. John J. Kozak, Phase transitions as a problem in bifurcation theory, Bifurcation theory and applications in scientific disciplines (Papers, Conf., New York, 1977) Ann. New York Acad. Sci., vol. 316, New York Acad. Sci., New York, 1979, pp. 417–432. MR 556847
  • 51. L. Landau, On the problem of turbulence, C.R. Acad. Sci. USSR 44 (1944), 311. MR 11997
  • 52. O. E. Lanford, Bifurcation of periodic solutions into invariant tori: the work of Ruelle and Tokens, Lecture Notes in Math., vol. 322, Springer-Verlag, Berlin and New York, 1973.
  • 53. R. Larter and P. Ortoleva, Self-electophoretic phenomena, J. Theoret. Biol, (to appear).
  • 54. N. Levinson, A second order differential equation with singular solutions, Ann. of Math. 50 (1949), 127-153. MR 30079
  • 55. E. N. Lorenz, Deterministic nonperiodic flow, J. Atmospheric Sci. 20 (1963), 130-141.
  • 56. G. Yu Lyabarskiĭ, The application of group theory in physics, Pergamon Press, New York, 1960. MR 116926
  • 57. W. V. R. Malkus and G. Veronis, Finite amplitude cellular convection, J. Fluid Mech. 4 (1958), 225-269. MR 135012
  • 58. J. Marsden and M. McCracken, The Hopf bifurcation and its applications, Lecture Notes in Appl. Math. Sci. vol. 18, Springer-Verlag, Berlin and New York, 1976. MR 494309
  • 59. Robert M. May, Bifurcations and dynamic complexity in ecological systems, Bifurcation theory and applications in scientific disciplines (Papers, Conf., New York, 1977) Ann. New York Acad. Sci., vol. 316, New York Acad. Sci., New York, 1979, pp. 517–529. MR 556854
  • 60. J. B. McLeod and D. H. Sattinger, Loss of stability and bifurcation at a double eigenvalue, J. Functional Anal. 14 (1973), 62-84. MR 353079
  • 61. L. Michel, Les brisures spontanées de symétrie en physique, J. Phys. 36 (1975), C7/41-C7/51.
  • 62. L. Michel and L. A. Radicati, The geometry of the octet, Ann. Inst. Henri Poincaré, Sect A 18 (1973), 185-214. MR 325036
  • 63. L. Michel and L. A. Radicati, Properties of the breaking of hadronic internal symmetry, Ann. of Physics 66 (1971), 758-783. MR 285208
  • 64. W. Miller, Symmetry groups and their applications, Academic Press, New York, 1972. MR 338286
  • 65. J. Neimark, On some cases of periodic motions depending on parameters, Dokl. Akad. Nauk. SSR 129 (1959), 736-739. MR 132256
  • 66. H. G. Othmer, Applications of bifurcation theory in the analysis of spatial and temporal pattern formation, Bifurcation theory and applications in scientific disciplines (Papers, Conf., New York, 1977) Ann. New York Acad. Sci., vol. 316, New York Acad. Sci., New York, 1979, pp. 64–77. MR 556823
  • 67. H. G. Othmer and L. E. Scriven, Nonlinear aspects of dynamic pattern in cellular networks, J. Theoret Biol. 43 (1974), 83-112.
  • 68. G. Prodi, Theoremi di tipo locale per il sistema di Navier-Stokes e stabilita delle soluzioni stazionari, Rend. Sem. Mat. Univ. Padova 32 (1962), 374-397. MR 189354
  • 69. P. Rabinowitz, Existence and nonuniqueness of rectangular solutions of the Bénard problem, Arch. Rational Mech. Anal. 24 (1968), 32-57. MR 233557
  • 70. H. J. Raveché and C. A. Stuart, Bifurcation of solutions with crystalline symmetry, J. Math. Phys. 17 (1976), 1949-1953. MR 418776
  • 71. E. L. Riess, Imperfect bifurcation, Applications of Bifurcation Theory (P. Rabinowitz, ed.), Academic Press, New York, 1977. MR 445957
  • 72. P. H. Roberts, Dynamo theory, Mathematical Problems in the Geophysical Sciences, Lectures in Appl. Math. vol. 14, Amer. Math. Soc., Providence, R. I., 1971.
  • 73. Otto E. Rössler, Continuous chaos—four prototype equations, Bifurcation theory and applications in scientific disciplines (Papers, Conf., New York, 1977) Ann. New York Acad. Sci., vol. 316, New York Acad. Sci., New York, 1979, pp. 376–392. MR 556843
  • 74. D. Ruelle and F. Takens, On the nature of turbulence, Comm. Math. Phys. 20 (1971), 167-192. MR 284067
  • 75. D. Ruelle, The Lorenz attractor and the problem of turbulence, Turbulence and Navier-Stokes Equations (R. Temam, ed.), Lecture Notes in Math., vol. 565, Springer-Verlag, Berlin and New York, 1975. MR 467839
  • 76. R. Sacker, On invariant surfaces and bifurcation of periodic solutions of ordinary differential equations, New York University IMM-NYU, 333 (1964).
  • 77. D. Sather, Branching of solutions of nonlinear equations, Rocky Mountain J. Math. 3 (1973), 204-250. MR 336484
  • 78. D. Sather, Branching and stability for nonlinear gradient operators, Nonlinear Analysis (Cesari, Kannan, and Weinberger, eds.), Academic Press, New York, 1978. MR 500357
  • 79. D. H. Sattinger, The mathematical problem of hydrodynamic stability, J. Math. Mech. 19 (1970), 797-817. MR 261182
  • 80. D. H. Sattinger, Stability of bifurcating solutions by Leray-Schauder degree, Arch. Rational Mech. Anal. 43 (1971), 154-166. MR 336485
  • 81. D. H. Sattinger, Bifurcation of periodic solutions of the Navier-Stokes equations, Arch. Rational Mech. Anal. 41 (1971), 68-80. MR 272257
  • 82. D. H. Sattinger, Topics in stability and bifurcation theory, Lecture Notes in Math., vol. 309, Springer-Verlag, Berlin and New York, 1973. MR 463624
  • 83. D. H. Sattinger, Group representation theory and branch points of nonlinear functional equations, SIAM J. Math. Anal. 8 (1977), 179-201. MR 438383
  • 84. D. H. Sattinger, Group representation theory, bifurcation theory and pattern formation, J. Funct. Anal. 28 (1978), no. 1, 58–101. MR 493378, https://doi.org/10.1016/0022-1236(78)90080-0
  • 85. D. H. Sattinger, Selection mechanisms for pattern formation, Arch. Rational Mech. Anal. 66 (1977), 31-42. MR 488129
  • 86. D. H. Sattinger, Bifurcation from rotationally invariant states, J. Math. Phys. 19 (1978), no. 8, 1720–1732. MR 500398, https://doi.org/10.1063/1.523871
  • 87. David H. Sattinger, Group-theoretic methods in bifurcation theory, Lecture Notes in Mathematics, vol. 762, Springer, Berlin, 1979. With an appendix entitled “How to find the symmetry group of a differential equation” by Peter Olver. MR 551626
  • 88. R. A. Schmitz, G. T. Renola and P. C. Garrigan, Observations of complex dynamic behavior in the H, Ann. New York Acad. Sci. 316 (1979), 638-651.
  • 89. S. Smale, Differential dynamical systems, Bull. Amer. Math. Soc. 73 (1967), 747-817. MR 228014
  • 90. J. T. Stuart, On the nonlinear mechanics of wave disturbances in stable and unstable parallel flows, J. Fluid Mech. 9 (1960), 353-370. MR 128228
  • 91. G. I. Taylor, Stability of a viscous fluid contained between two rotating cylinders, Philos. Trans. Roy. Soc. Ser. A 223 (1923), 284-343.
  • 92. E. E. Tareva, On a microscopic approach to the theory of polymorphic phase transitions, Physics Letters 49 A (1974), 309-310.
  • 93. E. E. Tareva and T. I. Trapezina, The bifurcation approach to the theory of the first order isotropic-nematic phase transition, Physics Letters 60 A (1977), 217-218.
  • 94. J. M. T. Thompson, Bifurcational aspects of catastrophe theory, Bifurcation theory and applications in scientific disciplines (Papers, Conf., New York, 1977) Ann. New York Acad. Sci., vol. 316, New York Acad. Sci., New York, 1979, pp. 553–571. MR 556858
  • 95. V. A. Trenogin and B. V. Loginov, The use of group properties to determine multi-parameter families of solutions of nonlinear equations, Mat. Sb. 85 (127) (1971), 440-454; English transl. Math. USSR Sbornik 14 (1971), 438-452. MR 283642
  • 96. A. M. Turing, The chemical basis of morphogenesis, Philos. Trans. Royal Soc. London Ser. B 237 (1952), 37-72.
  • 97. M. M. Vainberg and V. A. Trenogin, The methods of Lyapounov and Schmidt in the theory of nonlinear equations and their further development, Russian Math. Surveys 17 (1962), 1-60. MR 154113
  • 98. M. M. Vainberg and V. A. Trenogin, Theory of branching of solutions of nonlinear equations, Noordhoff, Leyden, 1974.
  • 99. W. Velte, Stabilitätsverhalten und verzwergung stationäres Lösungen der Navier-Stokes-schen Gleichungen, Arch. Rational Mech. Anal. 16 (1964), 97-125. MR 182240
  • 100. H. Weinberger, On the stability of bifurcating solutions, Nonlinear Analysis (Cesari, Kannan, and Weinberger, eds.), Academic Press, New York, 1978. MR 508719
  • 101. J. D. Weeks, S. A. Rice and J. J. Kozak, Analytic approach to the theory of phase transitions, J. Chem. Phys. 52 (1970), 2416-2426. MR 266559
  • 102. E. Wigner, Group theory and atomic spectra, Academic Press, New York, 1959. MR 106711

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1980): 35B32, 35B35, 20C99, 76E15

Retrieve articles in all journals with MSC (1980): 35B32, 35B35, 20C99, 76E15


Additional Information

DOI: https://doi.org/10.1090/S0273-0979-1980-14823-5

American Mathematical Society