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UNDECIDABLE DIOPHANTINE EQUATIONS 

BY JAMES P. JONES 

In 1900 Hubert asked for an algorithm to decide the solvability of all 
diophantine equations, P(x1, . . . , xv) = 0, where P is a polynomial with integer 
coefficients. In special cases of Hilbert's tenth problem, such algorithms are 
known. Siegel [7] gives an algorithm for all polynomials P(xx, . . . , xv) of degree 
< 2. From the work of A. Baker [1] we know that there is also a decision pro
cedure for the case of homogeneous polynomials in two variables, P(x, y) = c. 

The first steps toward the eventual negative solution of the entire (unre
stricted) form of Hilbert's tenth problem, were taken in 1961 by Julia Robinson, 
Martin Davis and Hilary Putnam [2]. They proved that every recursively enumer
able set, W can be represented in exponential diophantine form 

x e W o 3xl9 x 2 , . . . ,xM P(x, xl9 . . . ,xM, 2*1, . . . , 2*M) = 0, 

where P is a polynomial with integer coefficients and x%9 . . . , *M range over 
positive integers. 

In 1970 Ju. V. Matijasevic [4] proved that the exponential relation,j> =2* 
is diophantine and hence that every r.e. set W can be represented in polynomial 
(diophantine) form 

xGW*lxl9x29... 9xvP(x,x19x29.. . ,x v ) = 0, 

where the unknowns xx,. . . , xv range over positive integers. 
Since there exist r.e. nonrecursive sets, Matijasevic"s Theorem implies the 

undecidability of Hilbert's tenth problem. There is no algorithm to decide 
whether an arbitrary diophantine equation has a solution. 

Matijasevic's Theorem implies also the existence of particular undecidable 
diophantine equations. In fact there must exist universal diophantine equations, 
polynomial analogues of the universal Turing machine. This follows from the 
well-known fact that the r.e. sets, Wx, W29 . . . , can be listed in such a way that 
the binary relation, x € Wv, is r.e. Hence by [2], [4] there exists a universal 
polynomial U(x, v, xi9 . . . , xv) with the property 

xeWvolxl9...9xvU(pc,v,xl,...9 xv) = 0. 

Thus a single polynomial, in a fixed degree and a fixed number of unknowns, 
can define every r.e. set, by mere change of a parameter v. The existence of such 
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a universal polynomial follows immediately from [2], [4]. However, the con
struction of an actual example is a different matter. The first example to be 
specifically written down is given in [3]. More recently the author has construct
ed further examples. These are given below, without proof. (The proof uses the 
code idea of [6] together with new methods of Matijaseviö based on E. Kummer's 
Theorem about divisibility of binomial coefficients by prime powers.) 

THEOREM 1. In order that x G W{zuyy it is necessary and sufficient that 
the following system of equations has a solution in positive integers. 

elg2 + a = (b-xy)q2
9 q = b$60

9 X + </4 = 1 + \Z>5, 0 + 2 z = 55 , 

l = u + t69 e=y + md9 b = 2w, 

(g + q3-l-bl + l\ (e\ + e + lq2\ 
\ i J \ *X / 

. (bsq-2q + 2(e-z\)(l +xbs +s) 4 +*>5X(1 +(?4)\ = 2 + x 

\ b5q-2q J 

Here we consider the r.e. sets to be indexed by three indices, z, u, y instead 
of the usual one. This is an inessential restriction. If the reader prefers the tra
ditional indexing with a single parameter v9 he need only add to our equations a 
new equation, v = ((zuy)2 + u)2 + y and regard z, u and y as unknowns instead 
of parameters. 

As stated above our system of equations has 12 unknowns, specifically b, e9 

g, /, m, q, t, w, a, % 0, X and four parameters, z, u, y and x. An exponential 
equation, b = 2W appears, and the last line is a product of three binomial coef
ficients. In the next system the number of binomial coefficients is reduced to 
one. 

THEOREM 2. In order that x G Wizuy>, it is necessary and sufficient that 
the following system of equations has a solution in positive integers. 

elg2 +a = (b-xy)q2
9 q = b$60

9 X + ? 4 = 1+XZ>5, 0 + 2z = Z>5, 

/ = II + I9, e=y + md9 b = 2w
9 n = ql6

9 

r=\g + eq3+lqs+ (2(e - zX) • (1 + xbs+gf + XZ>5 + XZ> V > ? 4 ] 

•[w2-rt] + [^3-W + / + 0 X ^ 3 + ( o 5 - 2 > 7 5 ] - [ « 2 - l ] , W2=Qr)-

Here there are fourteen unknowns, b, e, g, /, m, n, q, r, t, w, a, % 0, X and 
the four parameters x, z, u,y. Only one binomial coefficient and one exponential 
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function appear. Next these are eliminated so that we obtain a system of purely 
polynomial equations. 

THEOREM 3. In order that x G W<zuy>, it is necessary and sufficient that 
the following system of equations has a solution in positive integers. 

elg1 + a = (b-xy)q2, q = b*60, X + q* = 1 + XZ>5, 

0 + 2z = é s , / = w + /0, e=y + m09 n=q16, 

r= \g + eq3 +lqS + (2(e-zX)(l +*Z>5 +g)4 + X&5 + XZ>V>74] [n2~n] 

+ fe3-M + / + ÖX(73+(Z>5-2)(75][«2-l], 

p = 2 w s W , p 2 * 2 - A ; 2 + l = 7 2 , 4(c-fa«2)2 +r? = fc2, 

* = r + l + / i p - / i , û = (ww2 + l)rsw2, 

c = 2r+l+<p, ^ = ^ + ^ - 2 ^ + 407-57, d2 = (a2-l)c2 + l, 

f2 = (a2 - 1 ) / V + 1, (d + of)2 = ((a +f2(d2 -a))2 - l)(2r+ 1 +/c)2 + 1. 

The equations of Theorem 3 have twenty eight unknowns, a, b, c, d, e, f, 
g, h, i, /, k, I, m, n, o, p, q, r, s, t, w, a, y, r\, 0, X, r, <p. The degree is 56 0 , 
however the equation q = bs can be replaced by certain others of low degree. 
In fact, by introducing some 30 additional unknowns and new equations one can 
reduce the degree of the system to 2. Then, by transposing terms to one side and 
summing squares one can construct a universal diophantine equation in 58 un
knowns and degree 4. 

Alternatively one may try instead to reduce the total number of unknowns, 
v. In [6] Julia Robinson and Ju. Matijasevic showed that v can be reduced uni
versally to 13. More recently Matijasevic [5] has improved this to v = 9. The 
corresponding value of the degree, ô is however very large. The following table 
gives various simultaneous possibilities for ô and v, sufficient for a universal equa
tion. 

THEOREM 4. The following 
v = 58, 

v = 38, 

v = 32, 

v = 29, 

v = 28, 

v = 26, 

i> = 25, 

j> = 24, 

6 = 4 

5 = 8 

8 = 12 

5 = 16 

S = 2 0 

6 = 2 4 

S = 2 8 

5 = 36 

pairs are universal. 
v = 21, 

v = 19, 

J» = 1 4 , 

v = 13, 

v= 12, 

v = l l , 

v = 10, 

v= 9, 

8 = 9 6 

8 = 2668 

5 = 2.0 x 10s 

8 = 6.6 x 1043 

8 = 1.3 x 1044 

8 = 4.6 x 1044 

8 = 8.6 x 1044 

8 = 1.6 x 104s 
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A different measure of size and complexity of a system of diophantine equa
tions is the total number of indicated arithmetical operations, o, i.e. the number 
of additions, subtractions and multiplications necessary to evaluate or determine 
the correctness of proposed solution. For the equations of Theorem 3, modified 
to do away with q = bs , it can be shown that o = 100. This number, o,can 
be given an interesting interpretation as a proof-theoretic complexity bound. 

Via Gödel numbering the theorems of an axiomatizable theory T become in 
effect an r.e. set, and the search for proofs the search for solutions of a diophan
tine equation. These solutions faithfully reflect the logical complexity of the 
original proof, for the entire deduction is effectively recoverable from the solution. 
Hence we have 

THEOREM 5. For any axiomatizable theory T and any proposition P, ifP 
has a proof in T, then P has another proof consisting of 100 additions and multi
plications of integers. 

For the universal equations in [3] the value of o was 243. At present o = 
100. As with v and ô it would be interesting to know the minimum value of o. 
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