A POINCARÉ-HOPF TYPE THEOREM
FOR THE DE RHAM IN Variant
BY DANIEL CHESS

The Poincaré-Hopf theorem relates the Euler-characteristic of a manifold to the local behavior of a generic vector-field on the manifold in a neighborhood of its zeroes. As a corollary of this, by taking the gradient, one can calculate the Euler-characteristic of a manifold from a local knowledge of a generic map to R^1 around its singular points. We prove an analogue of this theorem for calculation of the de Rham invariant of $4k + 1$ dimensional orientable manifolds from a map to R^2.

For $4k + 1$ dimensional orientable manifolds we have the de Rham invariant $d(m)$. This invariant is

(a) the rank of the 2-torsion in $H_{2k}(M)$,
(b) $\hat{\chi}_0(M) - \hat{\chi}_2(M)$ mod 2 where $\hat{\chi}_F(M)$ is the semicharacteristic of M with coefficients in F,
(c) $d(M) = [w_2w_{4k-1}(M), [M]] = [v_{2k}s^1v_{2k}(M), [M]]$, where $w_i(M)$ is the ith Stiefel-Whitney class and ν_i is the ith Wu class of M.

For the equivalence of these definitions see [L-M-P]. The de Rham invariant is important in the theory of surgery; see [M] or [M-S].

Definition of the local invariant. Let M^m, N^n be C^∞ manifolds. Let $C^\infty(M, N)$ be the space of C^∞ maps from M to N topologized with the C^∞ topology. Within $C^\infty(M, N)$ we have a dense (in fact residual) subset $G(M, N)$ of maps which are generic in the sense of Thom-Boardman [B] and satisfy the normal crossing condition [G-G]. This second condition is essentially that f is in general position as a map of its singularity submanifolds to N.

Let $f \in G(M, R^2)$; then df is of rank 2 except on a collection of disjoint closed curves in M, the singular set of $f, S_1(f)$. At points of $S_1(f), df$ is of rank 1. Restricted to $S_1(F) f$ is an immersion except at a finite set of points, $S_{1,1}(f)$, the cusp points of f. $S_1(f) - S_{1,1}(f) = S_{1,0}(f)$ is the set of fold points of f. Suppose $x \in S_{1,0}(f)$ then we can choose coordinates x_1, \ldots, x_n around x and coordinates y_1, y_2 around $f(x)$ so that

$$f(x_1, \ldots, x_n) = (x_1, x_2^2 + x_3^2 + \cdots + x_k^2 - x_{k+1}^2 - \cdots - x_n^2).$$
Similarly if \(x \) is a cusp point we can choose coordinates so that

\[
f(x_1, \ldots, x_n) = (x_1, x_2^3 + x_1 x_2 + x_3^2 + \cdots + x_k^2 - x_{k+1}^2 - \cdots - x_n^2).
\]

Now we quote a result from [L].

Theorem. Let \(M^m, m > 2 \) be of even Euler characteristic; then given \(f \in G(M, R^2) \), \(f \) is homotopic to an \(f_1 \) in \(G(M, R^2) \) with no cusp points.

In the case that \(f \in G(M, R^2) \) has no cusps \(f|S_1(f) \) is an immersion. The normal crossing condition guarantees that \(f(S_1(f)) \) crosses itself in a finite number of double points with no triple points. Let

\[
V(f) = \{ y \in R^2 | f^{-1}(y) \cap S_1(f) = 2 \text{ points} \}.
\]

Let \(N(S_1(f), M) \) be the normal bundle to \(S_1(f) \) in \(M \) and let \(G \) be the bundle over \(S_1(f) \) defined by the following exact sequence:

\[
T(M)|S_1(f) \xrightarrow{df} f^*T(R^2) \rightarrow G \rightarrow 0
\]

where if \(M \) is a manifold \(T(M) \) denotes its tangent bundle. Use of the (second) intrinsic derivative [L], [B] allows definition of a symmetric bilinear form

\[
B: N(S_1(f), M) \otimes N(S_1(f), M) \rightarrow G
\]
on \(N(S_1(f), M) \) with values in \(G \). \(B \) is nondegenerate on \(S_{1,0}(f) \) and has one-dimensional kernel on \(S_{1,1,0} \). Given \(x \in S_{1,0}(f) \) and a choice of an orientation of \(G_x, B_x \) is a nondegenerate bilinear form on \(N(S_1(f), M)_x \). Define the absolute index \(a(x) \) at \(x \) by \(a(x) = \min(\text{index}(B_x), m - 1 - \text{index}(B_x)) \). Note that \(a(x) \) is independent of the choice of orientation of \(G_x \).

Explicitly suppose \(C_j \) is a component of \(S_1(f) \) with no cusps, then \(f|C_j \) is an immersion so \(N(f(C_j), R^2) \) the normal bundle to \(F(C_j) \) in \(R^2 \) is well defined, isomorphic to \(G \), and trivializable. Let \(T: N(f(C_j), R^2) \rightarrow R^1 \) be a trivialization. Let \(D(C_j, M) \) be a choice of normal disc bundle to \(C_j \) in \(M \). By a slight abuse of notation we consider \(f: D(C_j, M) \rightarrow N(f(C_j), R^2) \); let \(g_x: D_x(C_j, M) \rightarrow R^1 \) denote the function

\[
g_x = T \circ f: D_x(C_j, M) \rightarrow R^1.
\]

Then \(\{g_x | x \in C_j \} \) is a differentiable family of functions on the fibers of \(D(C_j, M) \), each \(g_x \) has a Morse singularity at \(x \) and the form \(B_x \) is given by \(d^2 g_x \).

Let \(M^m \) be orientable with \(n = 2k + 1 \); then \(M \) has zero Euler-characteristic so use the theorem of Levine to choose \(f \in G(M, R^2) \) with no cusps. Let \(C_j \) be a component of \(S_1(f) \); as \(M \) is orientable \(N(C_j, M) \) is trivializable. Furthermore the choice of trivialization \(T \) above makes \(B \) a nondegenerate symmetric bilinear form on \(N(C_j, M) \). Thus the structure group of \(N(C_j, M) \) is given a reduction to \(O^+(p, m - p - 1) \), the orientation preserving components of
A POINCARÉ-HOPF THEOREM

1033

$O(p, m - p - 1)$. For $p \neq 0, m - 1, O^+(p, m - p - 1)$ has two components. Define $i(C_j) \in \mathbb{Z}/2\mathbb{Z}$, the index of C_j, by $i(C_j) = 0$ if and only if $N(C_j, M)$ is the trivial $O^+(p, m - p - 1)$ bundle and $i(C_j) = 1$ if and only if $N(C_j, M)$ is the nontrivial $O^+(p, m - p - 1)$ bundle. Note that $i(C_j)$ is independent of all choices of trivialization and orientations.

Define $\tau(f) \in \mathbb{Z}/2\mathbb{Z}$ by

$$\tau(f) = \sum i(C_j), \quad C_j \text{ a component of } S_1(f).$$

Define $r(f) = |V(f)| \mod 2$.

Statement of results.

Proposition A. $r(f) = t(f) + \tau(f)$ is independent of the choice of $f \in G(M, R^2)$ without cusps, so one can define $r(M) = r(f), f \in G(M, R^2)$ without cusps.

Comment. One can, with a little more effort, still define $r(f)$ for $f \in G(M, R^2)$ even when $f \in G(M, R^2)$ has cusps. However in this case $r(f)$ is no longer independent of f.

Proposition B. r is a homomorphism from oriented cobordism to $\mathbb{Z}/2\mathbb{Z}$; that is

(a) If $[M] = [N]$ in Ω_{2k+1} then $r(M) = r(N)$,

(b) $r(M_1 \cup M_2) = r(M_1) + r(M_2)$.

Let $\chi(M)$ be the Euler characteristic of M reduced mod 2.

(c) $r(M^{2k+1} \times N^{2p}) = r(M^{2k+1}) \cdot \chi(N^{2p})$.

Proposition C.

(a) Let M^{4k+1} be an orientable manifold then $r(M) = d(M)$.

(b) Let M^{4k+3} be an orientable manifold then $r(M) = 0$.

Thus Proposition C gives a way of determining the de Rham invariant, which is intersection theoretic in character, from the local behavior of a map M to R^2 around its singular set. It is illuminating to consider such an f as a pair of Morse functions in general position with respect to each other.

Sketch of proofs. Proposition A is proved by a careful analysis of a homotopy F from f_0 to f_1 where f_0 and f_1 are different choices of f on M^{2k+1}. We can take $F \in G(M \times I, R^2 \times I)$. First we reduce to the case that F has no dovetail singularities. In this case $S_1(F)$ is an embedded surface in $M \times I$ intersecting $M \times \{0\}$ and $M \times \{1\}$ normally in $S_1(f_0)$ and $S_1(f_1)$. On the interior of this surface we have circles of cusp points separating the surface into regions of constant absolute index. Let R_p be the union of the regions of absolute index p. Let $i(R_p) = \sum i(C)$ a component of $\partial(R_p)$, then analysis of the cusp...
singularity yields the equation

\[\sum_{i=0}^{k} i(R_p) = \tau(f_0) + \tau(f_1). \]

For \(p \neq k \) it is straightforward to prove \(i(R_p) = 0 \). As in the case that \(F \) has no dovetails we have

\[t(f_0) = t(f_1) \mod 2. \]

Proposition A reduces to showing \(i(R_k) = 0 \). This is easy for \(k \) odd, but subtler for \(k \) even. For \(k \) even we prove

Lemma. Let \(P \) be a component of \(R_k \); then \(P \) is a closed surface \(P^1 \) minus a collection of discs and \(P^1 \) is of even Euler characteristic. From this fact it follows from \(i(R_k) = 0 \).

Proposition B is proved by first observing that \(r(M) \) remains invariant if \(M \) is cut open and repasted along a codimension 1 submanifold of the form \(S^1 \times F \) by a pasting \(\phi: S^1 \times F \rightarrow S^1 \times F \) with \(\phi(x \times F) = x \times F \). Given this observation the results of [A] allow immediate demonstration of bordism invariance. For the relation of cutting and pasting and cobordism see [K-K-N-O].

Proposition C follows from explicit construction of the examples (using, for instance, (c) of Proposition B) in each dimension \(4k + 1 \) on which \(r \) and \(d \) agree and are nonzero. This, in addition to the result of [Br] that \(d(M) \) vanishes if and only if \([M] \) has a representative fibered over the two-sphere, is enough to show \(r(M^{4k+3}) = 0 \) use the results of [A-K] to choose a representative of \([M] \) fibered over \(S^2 \). On such a representative \(r(M) \) is zero by the observation of the previous paragraph.

References

[A-K] J. C. Alexander and S. M. Kahn, *Characteristic number obstructions to fibering oriented and complex manifolds over surfaces*, Univ. of Maryland, College Park, Maryland (Preprint).

A POINCARÉ-HOPF TYPE THEOREM

DEPARTMENT OF MATHEMATICS, PRINCETON UNIVERSITY, PRINCETON, NEW JERSEY 08540

Current address: Courant Institute of Mathematical Sciences, New York University, New York, New York 10012