BLOCKS WITH CYCLIC DEFECT GROUPS IN $GL(n, q)$

BY PAUL FONG AND BHAMA SRINIVASAN

Let G be a finite group and B an r-block of G with cyclic defect group R. The decomposition of the ordinary characters in B into modular characters is described by the Brauer tree T of B. The problem of determining the Brauer trees for finite groups of Chevalley type was proposed by Feit at the 1979 AMS Summer Institute. Our result is a necessary step in this problem: If $G = GL(n, q)$ and r is an odd prime not dividing q, then T is an open polygon with its exceptional vertex at one end. The proof also shows an interesting fit of the modular theory for such primes r with the underlying algebraic group, the Deligne-Lusztig theory, and Young diagrams.

Because R is a cyclic defect group, R has the form

$$R = \begin{pmatrix} I_l & 0 \\ 0 & R_1 \end{pmatrix},$$

(1)

where the elementary divisors of a generator of R_1 are, say, m copies of an irreducible polynomial of degree d over F_q. By (1) the structure of $C = C_G(R)$ is

$$C = \begin{pmatrix} C_0 & 0 \\ 0 & C_1 \end{pmatrix},$$

(2)

where $C_0 \cong GL(l, q)$ and $C_1 \cong GL(m, q^d)$. The normalizer $N = N_G(R)$ is then obtained by adjoining to C an element t of the form

$$t = \begin{pmatrix} I_l & 0 \\ 0 & t_1 \end{pmatrix},$$

where t_1 induces a field automorphism of order d on C_1.

By Brauer's First Main Theorem B corresponds to a block B_C of C with defect group R, where B_C is determined up to conjugacy in N. Let E be the stabilizer of B_C in N, so $e = [E: C]$ is then the inertial index of B. Let Λ be a set of representatives for the orbits of E on the set of nontrivial irreducible characters of R. In the Brauer-Dade theory [1] the exceptional characters χ_λ in B are labeled by λ in Λ, the nonexceptional characters χ_i in B by $i = 1, 2, \ldots, e$, and the $e + 1$ vertices of T by $\chi_1, \chi_2, \ldots, \chi_e$, exc.

Received by the editors April 22, 1980.

This research was supported by NSF grants MCS79-02750 and MCS78-02184.

© 1980 American Mathematical Society

0002-9904/80/0000-0509/$02.00

1041
The block B_C decomposes by (2) as $B_C = B_{C_0} \times B_{C_1}$, where B_{C_0} is a block of C_0 of defect 0 and B_{C_1} is a block of C_1 with defect group R_1. Since $R_1 \leq Z(C_1)$, a theorem of Reynolds [6] implies that the characters θ_λ in B_{C_1} can be labeled by the irreducible characters λ of R so that θ_1 is the unique r-rational character in B_{C_1} and so that $\theta_\lambda(xy) = \lambda(x)\theta_1(y)$ for any x in R_1 and any r'-element y of C_1.

Let $R_C^G(\theta)$ be the virtual character of G associated to the irreducible character θ of C by the Deligne-Lusztig theory. Thus $R_C^G(\theta)$ is an element of the Grothendieck ring of representations of G over \overline{Q}_l. (We have modified the notation of [2], [4]. We should strictly write $R_C^G(\theta)$, where G is the algebraic group $GL(n, \overline{F}_q)$, F is a Frobenius endomorphism of G with $G = \overline{G}^F$, \overline{C} is a regular subgroup of \overline{G}, and $C = \overline{C}^F$.)

Proposition 1. There is a labeling of the $X_\lambda, \lambda \in \Lambda$, and signs e_0, e_1, \ldots, e_e such that

$$R_C^G(\theta_0 \theta_\lambda) = e_0 X_\lambda \quad \text{for } \lambda \in \Lambda,$$

$$R_C^G(\theta_0 \theta_1) = e_1 X_1 + e_2 X_2 + \cdots + e_e X_e.$$

The signs e_i and the generalized decomposition numbers of B corresponding to a generator x of R are related by

$$e_i = d^x(X_i, \theta_0 \theta_1) \quad \text{for } 1 \leq i \leq e,$$

$$e_0 \sum_{g \in E/C} \lambda^g = d^x(X_\lambda, \theta_0 \theta_1) \quad \text{for } \lambda \in \Lambda.$$

A classification of the irreducible characters of G has been given by Green [3], and can be restated in the language of [5] as follows: Each irreducible character θ of G corresponds to an ordered pair (s, ξ), where s is a semisimple element of G and ξ is a unipotent irreducible character of $C_G(s)$. The correspondence is given by $\theta = \pm R_C^G(s)(\xi\eta)$, where η is the linear character of $C_G(s)$ dual to s. (The dual η of s is defined by fixing an isomorphism of F^* into \mathbb{Q}. Then $\text{Hom}(\overline{L}^F/\overline{L}, \overline{L})^F \approx (Z(\overline{L}))^F$ for any regular subgroup \overline{L} of \overline{G}. In particular, if s is a semisimple element of G and $\overline{L} = C_G(s)$, then s is in $(Z(\overline{L}))^F$ and thus determines a linear character η of $C_G(s)$.)

Let (s_i, ξ_i) be a pair corresponding to the irreducible character θ_i of C_i for $i = 0, 1$. Thus

$$\theta_i = \pm R_{L_i}^C(\xi_i \eta_i),$$

where $L_i = C_{C_i}(s_i)$ and η_i is the linear character of L_i dual to s_i. In the case $i = 0$, ξ_0 has defect 0; in the case $i = 1, L_1$ is a torus of order $q^{dm} - 1$ in C_1 and ξ_1 is the 1-character of L_1. Let $s = s_0 s_1$ and $K = C_G(s)$. It then follows that $C_K(R) = C_C(s) = L_0 \times L_1, N_K(R) = (C_K(R), t^f)$, and $|N_K(R)/C_K(R)| = e$, where $d = ef$. In particular, if B_{L_0} is the block of L_0 containing ξ_0 and B_{L_1} is
the principal block of L_1, then $(B_{L_0} \times B_{L_1})^K$ is a block B_K of K with defect group R and inertial index e. Let $\psi_\lambda, \lambda \in \Lambda$, be the exceptional characters in B_K, and $\psi_1, \psi_2, \ldots, \psi_e$ the nonexceptional characters in B_K. The $\psi_1, \psi_2, \ldots, \psi_e$ are then unipotent. Let η be the linear character of K dual to s.

Proposition 2. There is a labeling of the $\psi_1, \psi_2, \ldots, \psi_e$ and signs $\delta_0, \delta_1, \ldots, \delta_e$ such that

\[
R^K_G(\delta_0 \psi_\lambda \eta) = e_0 \chi_\lambda, \quad \lambda \in \Lambda, \\
R^K_G(\delta_i \psi_i \eta) = e_i \chi_i, \quad 1 \leq i \leq e.
\]

In particular, R^K_G induces a 1-1 correspondence between the nonexceptional characters of B and the unipotent characters in B_K.

The group K is a direct product $K = K_1 \times \cdots \times K_t$, where K_i, say, is isomorphic to $GL(n_i, q^{d_i})$. Let $B_K = B_{K_1} \times \cdots \times B_{K_t}$ be the corresponding decomposition of B_K. We may label these so that B_{K_i} has defect 0 for $i > 1$. Then B_{K_1} has defect group R. The unipotent characters of K_1 are in natural 1-1 correspondence with the irreducible characters of the Weyl group W_1 of K_1, and since W_1 is the symmetric group on n_1 symbols, the unipotent characters of K_1 are thus naturally labeled by partitions of n_1. Since the characters in B_K are products of a fixed character of $K_2 \times \cdots \times K_t$ by the characters in B_{K_1}, we may also label the nonexceptional characters in B_K by the partitions $\mu_1, \mu_2, \ldots, \mu_e$ of n_1 labeling the unipotent characters in B_{K_1}. Thus we write ψ_μ_i for ψ_i.

Proposition 3. Each partition μ_i has a unique e-hook ν_i and the hooks $\nu_1, \nu_2, \ldots, \nu_e$ are pairwise distinct. The e-core μ_0 of μ_i, obtained by deleting ν_i from μ_i, is the same for all i; moreover, μ_0 has no e-hooks. The μ_i account for all partitions μ of n_1 with a unique e-hook and e-core μ_0.

Let the partitions μ_i be arranged so that the e-hook ν_i of μ_i has leg length $i - 1$. By our labeling the nonexceptional characters in B are of the form $\chi_i = R^K_G(\delta_i e_i \psi_\mu_i \eta)$.

Proposition 4. If the χ_i are labeled as above, then the signs δ_i are given by $\delta_i = (-1)^{i-1}$. Moreover, R^K_G induces a graph isomorphism of the Brauer trees of B_K and B. The tree of B is the open polygon.

\[
\begin{array}{cccccc}
\chi_1 & \chi_2 & \chi_3 & \cdots & \chi_e & \text{exc}
\end{array}
\]

References

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ILLINOIS AT CHICAGO CIRCLE, CHICAGO, ILLINOIS 60680