Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 

 

The stability of the Bergman kernel and the geometry of the Bergman metric


Authors: Robert E. Greene and Steven G. Krantz
Journal: Bull. Amer. Math. Soc. 4 (1981), 111-115
MSC (1980): Primary 32H10, 35N15; Secondary 32G05, 32H05, 53C55
MathSciNet review: 590822
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. L. Boutet de Monvel and J. Sjöstrand, Sur la singularité des noyaux de Bergman et de Szegö, Soc. Mat. de France Asterisque 34-35 (1976), 123-164.
  • 2. Shiu Yuen Cheng and Shing Tung Yau, On the existence of a complete Kähler metric on noncompact complex manifolds and the regularity of Fefferman’s equation, Comm. Pure Appl. Math. 33 (1980), no. 4, 507–544. MR 575736, 10.1002/cpa.3160330404
  • 3. Charles Fefferman, The Bergman kernel and biholomorphic mappings of pseudoconvex domains, Invent. Math. 26 (1974), 1–65. MR 0350069
  • 4. G. B. Folland and J. J. Kohn, The Neumann problem for the Cauchy-Riemann complex, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1972. Annals of Mathematics Studies, No. 75. MR 0461588
  • 5. R. E. Greene and S. G. Krantz, Stability of the Bergman kernel and curvature properties of bounded domains, Proc. Princeton Conf. on Several Complex Variables, 1979 (to appear).
  • 6. R. E. Greene and S. G. Krantz, Deformation of complex structures, estimates for the (partial d) equation, and stability of the Bergman kernel, Advances in Math, (to appear).
  • 7. Robert E. Greene and Steven G. Krantz, The automorphism groups of strongly pseudoconvex domains, Math. Ann. 261 (1982), no. 4, 425–446. MR 682655, 10.1007/BF01457445
  • 8. M. Gromov, Manifolds of negative curvature, J. Differential Geom. 13 (1978), no. 2, 223–230. MR 540941
  • 9. Norberto Kerzman, The Bergman kernel function. Differentiability at the boundary, Math. Ann. 195 (1972), 149–158. MR 0294694
  • 10. Paul F. Klembeck, Kähler metrics of negative curvature, the Bergmann metric near the boundary, and the Kobayashi metric on smooth bounded strictly pseudoconvex sets, Indiana Univ. Math. J. 27 (1978), no. 2, 275–282. MR 0463506
  • 11. Lu Qi-Keng (= K. H. Look), On Kähler manifolds with constant negative curvature, Acta Math. Sinica 16 (1966), 269-281 (Chinese) = Chinese Math. 9 (1966), 283-298.
  • 12. G. D. Mostow and Yum Tong Siu, A compact Kähler surface of negative curvature not covered by the ball, Ann. of Math. (2) 112 (1980), no. 2, 321–360. MR 592294, 10.2307/1971149
  • 13. Yum Tong Siu, The complex-analyticity of harmonic maps and the strong rigidity of compact Kähler manifolds, Ann. of Math. (2) 112 (1980), no. 1, 73–111. MR 584075, 10.2307/1971321
  • 14. B. Wong, Characterization of the unit ball in 𝐶ⁿ by its automorphism group, Invent. Math. 41 (1977), no. 3, 253–257. MR 0492401

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1980): 32H10, 35N15, 32G05, 32H05, 53C55

Retrieve articles in all journals with MSC (1980): 32H10, 35N15, 32G05, 32H05, 53C55


Additional Information

DOI: https://doi.org/10.1090/S0273-0979-1981-14874-6