FOR $n > 3$ THERE IS ONLY ONE
FINITELY ADDITIVE ROTATIONALLY INVARIANT MEASURE
ON THE n-SPHERE DEFINED
ON ALL LEBESGUE MEASURABLE SUBSETS
BY DENNIS SULLIVAN

The following paragraph is taken from the introduction of Joseph Rosenblatt’s paper [R].

“Let β be the ring of Lebesgue measurable sets in the n-sphere S^n, and let
λ_n denote the Lebesgue measure on β normalized by $\lambda_n(S^n) = 1$. The classical
characterization by Lebesgue of λ_n is that it is the unique positive real-valued
function μ on β which satisfies these three conditions:

(a) $\mu(S^n) = 1$;
(b) μ is invariant under isometries;
(c) μ is countably additive.

In 1923 Banach [B] studied the question of Ruziewicz whether μ is still unique
when (c) is replaced by

(c$_0$) μ is finitely additive.

Banach gave a negative answer to this question for S^1 but for S^n, $n \geq 2$, the
question is still unanswered.”

From the body of Rosenblatt’s paper one can extract the implication that
if Lebesgue measure λ_n on S^n is not characterized by (a), (b), and (c$_0$) then
there is a net of measurable subsets $(A_\alpha) \subset S^2$ which is asymptotically invariant
and nontrivial, namely $\lim_{\alpha}(\lambda_n(gA_\alpha \Delta A_\alpha)/\lambda_nA_\alpha) = 0$ for all rotations g and so
that $0 < \lambda_n(A_\alpha) \leq c < 1$ (Theorem 1.4 of [R]). Here $A \Delta B = A \cup B - A \cap B$.

The following Proposition will show that such asymptotically invariant nets
on S^n are impossible, $n > 3$.

PROPOSITION. For each $n > 3$ there is a countable subgroup Γ_n in the
group O_{n+1} of rotations of S^n satisfying

(i) the action of Γ_n on S^n is ergodic,
(ii) the group Γ_n satisfies Kazhdan’s property T:

There exist a finite subset $\Lambda \subset \Gamma_n$ and an $\varepsilon > 0$, so that for any unitary
representation π if Γ, if there exists a vector ξ in H_n such that $||\xi|| = 1$,
\[\| \pi(g) \xi - \xi \| \leq \epsilon \quad \forall g \text{ in } \Lambda \text{ then there exists a vector } \xi' \in H_{\pi} \text{ with } \pi(g) \xi' = \xi' \quad \forall g \in \Gamma_n, \text{ and } \xi' \neq 0. \]

Proof. For \(n > 3 \) let \(\Gamma_n \) be the group of \((n + 1) \times (n + 1)\) matrices with entries integers \((n + m\sqrt{2})\) of the field \(Q(\sqrt{2}) \) where such matrices preserve the quadratic form

\[x_0^2 + x_1^2 + \cdots + x_{n-2}^2 - \sqrt{2}x_{n-1}^2 - \sqrt{2}x_n^2. \]

If we conjugate all the matrices of \(\Gamma_n \) by the field automorphism of \(Q(\sqrt{2}) \) we obtain a group of matrices isomorphic to \(\Gamma_n \) preserving the form

\[x_0^2 + x_1^2 + \cdots + x_{n-2}^2 + \sqrt{2}x_{n-1}^2 + \sqrt{2}x_n^2. \]

So \(\Gamma_n \) is embedded as a subgroup of \(O(n+1) \), the real orthogonal group of the second quadratic form. If \(O(n-1, 2) \) denotes the real orthogonal group of the first quadratic form then the diagonal embedding \(\Gamma_n \rightarrow O(n+1) \times O(n-1, 2) \) is discrete because the diagonal embedding \((n + m\sqrt{2}) \in Q(\sqrt{2}) \rightarrow (n + m\sqrt{2}, n - m\sqrt{2}) \in R \times R \) is discrete. By a basic theorem of arithmetic groups \(\Gamma_n \) has cofinite volume in \(O(n+1) \times O(n-1, 2) \). Since \(O(n+1) \) is compact, \(\Gamma_n \) is discrete with cofinite volume in \(O(n-1, 2) \).

Since \(O(n-1, 2) \) is a simple Lie group of real rank \(\geq 2 \) it has Kazhdan's property (see [K]) which descends by an averaging argument (Theorem 3 of [K]) to the discrete subgroup with cofinite volume \(\Gamma_n \). Thus \(\Gamma_n \) has Kazhdan's property \(T \). This proves (ii).

Now if the topological closure of \(\Gamma_n \subset O(n+1) \) were a proper closed subgroup \(G \) then the complexification \(G_C \) of \(G \) in the complexification \(O(n+1, C) \) of \(O(n+1) \) would define a proper C-algebraic subgroup containing \(\Gamma_n \). But for the conjugate embedding \(\Gamma_n \subset O(n-1, 2) \subset O(n+1, C) \), \(\Gamma_n \) is Zariski dense by Borel's density theorem. This is a contradiction showing \(\Gamma_n \) is topologically dense in \(O(n+1) \).

Since \(\Gamma_n \) is a dense subgroup of isometries ergodicity follows immediately from a consideration of Lebesgue density points. This proves (i).

Combining the Proposition with Rosenblatt's work [R] we have the answer to the Banach-Ruziewicz problem, \(n > 3 \).

Theorem. Spherical measure on \(S^n, n > 3 \), is the only finitely additive normalized measure invariant under rotations and defined\(^1\) on all Lebesgue measurable sets.

Proof. If not by Rosenblatt [R] there is, as mentioned above, a nontrivial asymptotically invariant net of sets \((A_\alpha) \subset S^2\). Clearly we can extract a \(1\text{In } [R] \) one finds Tarski's observation using paradoxical decompositions that if a finitely additive measure is defined on all Lebesgue measurable sets it must be zero on Lebesgue null sets.
countable subsequence \((A_j) \subset S^2\) which is asymptotically invariant for the countable subgroup \(\Gamma_n \subset O_n+1\) constructed in the Proposition. Namely, \(0 < \lambda_n(A_j) \leq c < 1\), and for all \(g \in \Gamma_n\) \(\lim (\lambda_n(gA_j \Delta A_j)/\lambda_n(A_j)) = 0\).

Now convert the characteristic \(\chi\) of \(A_j\) into functions of integral zero by forming \(f_j = (\chi A_j/\sqrt{\lambda_n(A_j)}) - \sqrt{\lambda_n(A_j)}\) and then \(F_j = f_j/\|f_j\|_2\). Then \(\int f_j d\lambda_n = 0\) because \(\int f d\lambda_n = 0\), and \(\|F_j\|_2 = 1\). Also

\[
\|f_j \circ g - f_j\|_2^2 = 2(1 - \lambda_n(g^{-1}A_j \cap A_j)/\lambda_n(A_j)).
\]

Since \(\|f\|_2^2 = \lambda_n(S^2 \mid A_j)\), it is bounded away from zero by the nontriviality of \((A_j)\). Thus \(\lim \|F_j \circ g - F_j\|_2 = 0\) for all \(g \in \Gamma_n\) and \(\|F_j\|_2 = 1\). (Compare [R, Lemma 3.1].)

If we apply property \(T\) for \(\Gamma_n\) for the representation of \(\Gamma_n\) on the space \(H\) of square integrable functions \(f\) on \(S^n\) of integral zero we obtain from the existence of the vectors \(F_j\) of \(H\), the existence of an element in \(H\) of norm 1 which is \(\Gamma_n\) invariant. This contradicts ergodicity of \(\Gamma_n\). Thus there is no such net of asymptotically invariant sets, and the Theorem is proved.

ACKNOWLEDGEMENT. I am indebted to Arlan Ramsay for showing me Rosenblatt’s paper during a conversation about the yet unsolved problem of the existence of a rotationally invariant finitely additive Borel measure on \(S^n\) which is zero on meagre sets. (E. Marczewski (Szprirajn), Problem 169, The Scottish Book 1937–1938). The realization that known examples of discrete groups having Kazhdan’s property provided the answer to Ruziewicz’s problem about Lebesgue measure occurred during a discussion of Rosenblatt’s paper with Jan Mycielski.

REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF COLORADO, BOULDER, COLORADO 80309

Current address: Institut des Hautes Études Scientifiques, Bures-Yvette, France