Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 

 

On the integral homology of finitely-presented groups


Authors: G. Baumslag, E. Dyer and C. F. Miller
Journal: Bull. Amer. Math. Soc. 4 (1981), 321-324
MathSciNet review: 609041
Full-text PDF

References | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. G. Baumslag, E. Dyer, and A. Heller, The topology of discrete groups, J. Pure Appl. Algebra 16 (1980), no. 1, 1–47. MR 549702, 10.1016/0022-4049(80)90040-7
  • 2. Robert Bieri, Mayer-Vietoris sequences for HNN-groups and homological duality, Math. Z. 143 (1975), no. 2, 123–130. MR 0382404
  • 3. Karl W. Gruenberg, Cohomological topics in group theory, Lecture Notes in Mathematics, Vol. 143, Springer-Verlag, Berlin-New York, 1970. MR 0279200
  • 4. G. Higman, Subgroups of finitely presented groups, Proc. Roy. Soc. Ser. A 262 (1961), 455–475. MR 0130286
  • 5. Heinz Hopf, Fundamentalgruppe und zweite Bettische Gruppe, Comment. Math. Helv. 14 (1942), 257–309 (German). MR 0006510
  • 6. D. M. Kan and W. P. Thurston, Every connected space has the homology of a K (π, 1), Topology 15 (1976), 253-258.
  • 7. Roger C. Lyndon and Paul E. Schupp, Combinatorial group theory, Springer-Verlag, Berlin-New York, 1977. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 89. MR 0577064
  • 8. S. Mac Lane, Homology, Die Grundlehren der Math. Wissenschaften Bd. 114, Springer-Verlag, Berlin-Heidelberg-New York, 1975.
  • 9. Charles F. Miller III, On group-theoretic decision problems and their classification, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1971. Annals of Mathematics Studies, No. 68. MR 0310044
  • 10. John Stallings, A finitely presented group whose 3-dimensional integral homology is not finitely generated, Amer. J. Math. 85 (1963), 541–543. MR 0158917


Additional Information

DOI: https://doi.org/10.1090/S0273-0979-1981-14898-9