SYZYGIES OF SMALL RANK

BY E. GRAHAM EVANS AND PHILLIP GRIFFITH

Let R be a local domain and M a finitely-generated R-module. The module M is called a kth syzygy if it sits back k steps in projective resolution of some R-module. The syzygy problem asks if nonfree kth syzygies of finite projective dimension necessarily have rank greater than or equal to k. We have established the following result.

Theorem. Let R be a local Cohen-Macaulay domain containing a field and let M be a finitely-generated kth syzygy of finite projective dimension and of rank less than k. Then M is free.

For M an R-module and m an element of M we define the order ideal, $O_M(m)$, to be the ideal which consists of the images of m under homomorphisms of M to R. The proof proceeds by considering the height of particular order ideals, $O_M(m)$, in relation to the projective dimension of M.

Specifically, if M is a kth syzygy of the R-module N and if x_1, \ldots, x_{k-1} is an R sequence, then $\text{Tor}_k^R(N, R/(x_1, \ldots, x_{k-1}))$ is zero. However, if $O_M(m)$ is contained in the ideal (x_1, \ldots, x_{k-1}), then considering the map from M to the free module F which occurs in the resolution of N, the image of m is contained in $(x_1, \ldots, x_{k-1})F$. Thus $\text{Tor}_k^R(N, R/(x_1, \ldots, x_{k-1}))$ is nonzero. However, if $O_M(m)$ is contained in the ideal (x_1, \ldots, x_{k-1}), then considering the map from M to the free module F which occurs in the resolution of N, the image of m is contained in $(x_1, \ldots, x_{k-1})F$. Thus $\text{Tor}_k^R(N, R/(x_1, \ldots, x_{k-1}))$ is nonzero. This idea is the key step in Gröbner’s proof of Hilbert’s syzygy theorem [4]. It shows that the ideal $O_M(m)$ tends to have height at least k if M is a kth syzygy. On the other hand the height of $O_M(m)$ tends to be bounded by the rank of M. While modules of small rank can have elements with the height of $O_M(m)$ large, we show that such phenomena cannot occur in the minimal counterexample to the syzygy problem.

The hypothesis that R contains a field is needed to insure the existence of maximal Cohen-Macaulay modules [6] which replace the module $R/(x_1, \ldots, x_{k-1})$ in our modification of Gröbner’s proof [4]. The hypothesis that R is Cohen-Macaulay is needed to apply the Auslander-Bridger criterion [1] for a module to
be a kth syzygy. In particular, M is a kth syzygy of finite projective dimension over a Cohen-Macaulay ring R precisely when M is S_k. We recall that M is S_k means that $\text{depth}_R M_P \geq \min(k, \text{height } P)$ for all prime ideals P of R.

This result has several consequences in commutative algebra and algebraic geometry (cf. [2] for a more complete list). We mention two which seem among the most interesting.

Corollary 1. Let R be a regular local ring containing a field and let P be a prime ideal of height two such that the module of dualizing differentials, $\Omega^0_{R/P}$, is cyclic. Then R/P is a complete intersection. We note that $\Omega^0_{R/P}$ is cyclic if R/P is a unique factorization domain.

Corollary 2. Let E be an algebraic vector bundle on \mathbb{P}^n of rank $k < n$ which is not a sum of line bundles. Then at least one of the twists of the cohomology groups $H^1(E), \ldots, H^{k-1}(E)$ is nonzero.

This corollary is mentioned by Hartshorne [5]. Indeed it is equivalent to the original problem for the case of graded syzygies over rings of polynomials.

The preceding results will appear in our article [3].

REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN, URBANA, ILLINOIS 61801