Decidable varieties with modular congruence lattices

Authors:
S. Burris and R. McKenzie

Journal:
Bull. Amer. Math. Soc. **4** (1981), 350-352

MSC (1980):
Primary 03B25, 08B10, 08A05

DOI:
https://doi.org/10.1090/S0273-0979-1981-14912-0

MathSciNet review:
609049

Full-text PDF

References | Similar Articles | Additional Information

**1.**S. Burris and H. Werner,*Sheaf constructions and their elementary properties*, Trans. Amer. Math. Soc. 248 (1979), 269-309. MR**522263****2.**R. Freese and R. McKenzie,*The commutator, an overview*(preprint).- 2a. R. Freese and R. McKenzie,
*Residually small varieties with modular congruence lattices*, Trans. Amer. Math. Soc. 264 (1981), 419-430. MR**603772**

- 2a. R. Freese and R. McKenzie,
**3.**J. Hagemann and C. Herrmann,*A concrete ideal multiplication for algebraic systems and its relation to congruence distributivity*, Arch. Math. (Basel) 32 (1979), 234-245. MR**541622****4.**C. Herrmann,*Affine algebras in congruence modular varieties*, Acta Sci. Math. (Szeged) 41 (1979), 119-125. MR**534504****5.**A. F. Pixley,*Completeness in arithmetical algebras*, Algebra Universalis 2 (1972), 179-196. MR**321843****6.**M. Rubin,*The theory of Boolean algebras with a distinguished subalgebra is undecidable*, Ann. Sci. Univ. Clermont No. 60 Math. No. 13 (1976), 129-134. MR**465835****7.**J. D. H. Smith,*Mal'cev varieties*, Lecture Notes in Math., vol. 554, Springer-Verlag, Berlin and New York, 1976. MR**432511****8.**A. P. Zamjatin,*A nonabelian variety of groups has an undecidable elementary theory*, Algebra and Logic 17 (1978), 13-17. MR**516387**

Retrieve articles in *Bulletin of the American Mathematical Society*
with MSC (1980):
03B25,
08B10,
08A05

Retrieve articles in all journals with MSC (1980): 03B25, 08B10, 08A05

Additional Information

DOI:
https://doi.org/10.1090/S0273-0979-1981-14912-0