Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Symplectic geometry


Author: Alan Weinstein
Journal: Bull. Amer. Math. Soc. 5 (1981), 1-13
MSC (1980): Primary 58F05
DOI: https://doi.org/10.1090/S0273-0979-1981-14911-9
MathSciNet review: 614310
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • Ralph Abraham and Jerrold E. Marsden, Foundations of mechanics, Benjamin/Cummings Publishing Co., Inc., Advanced Book Program, Reading, Mass., 1978. Second edition, revised and enlarged; With the assistance of Tudor Raţiu and Richard Cushman. MR 515141
  • [AR] V. I. Arnold, Mathematical methods of classical mechanics, Graduate Texts in Math., vol. 60, Springer-Verlag, Berlin and New York, 1978. MR 690288
  • [AU-K] L. Auslander and B. Kostant, Polarization and unitary representations of solvable Lie groups, Invent. Math. 14 (1971), 255-354. MR 293012
  • [BI] G. D. Birkhoff, Fifty years of American mathematics, Semicentennial Addresses of Amer. Math. Soc., 1938, p. 307.
  • [BO] C. E. Bond, Biology of fishes, Sanders, Philadelphia, Pa., 1979.
  • [BU] L. Boutet de Monvel, private communication.
  • L. Boutet de Monvel and V. Guillemin, The spectral theory of Toeplitz operators, Annals of Mathematics Studies, vol. 99, Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo, 1981. MR 620794
  • Shiing Shen Chern, From triangles to manifolds, Amer. Math. Monthly 86 (1979), no. 5, 339–349. MR 528789, https://doi.org/10.2307/2321093
  • [D] J. J. Duistermaat, Applications of Fourier integral operators, Proc. Internat. Congr. Math. (Vancouver, 1974), Canadian Mathematical Congress, 1975, pp. 263-268. MR 438404
  • [D-H] J. J. Duistermaat and L. Hörmander, Fourier integral operators. II, Acta Math. 128 (1972), 183-269. MR 388464
  • [F-Z] L. Faddeev and V. Zaharov, Korteweg-de Vries equation: a completely integrable Hamiltonian system, Funkcional. Anal. i Priložen 5 (1971), 18-27. MR 303132
  • [G] V. W. Guillemin, Clean intersection theory and Fourier integral operators, Lecture Notes in Math., vol. 459, Springer-Verlag, Berlin and New York, 1975, pp. 23-35. MR 415689
  • [G-S1] V. W. Guillemin and S. Sternberg, Geometric asymptotics, Amer. Math. Soc., Providence, R. I., 1976.
  • Victor Guillemin and Shlomo Sternberg, Some problems in integral geometry and some related problems in microlocal analysis, Amer. J. Math. 101 (1979), no. 4, 915–955. MR 536046, https://doi.org/10.2307/2373923
  • [H-K] P. de la Harpe and M. Karoubi, Perturbations compactes des representations d'un groupe dans un espace de Hilbert, Bull. Soc. Math. France Mém. 46 (1976), 41-65.
  • [HR] L. Hörmander, Fourier integral operators. I, Acta Math. 127 (1971), 79-183. MR 388463
  • [K-K-S] D. Kazhdan, B. Kostant, and S. Sternberg, Hamiltonian group actions and dynamical systems of Calogero Type, Comm. Pure Appl. Math. 31 (1978), 481-508. MR 478225
  • [KI1] A. A. Kirillov, Unitary representations of nilpotent Lie groups, Uspehi Mat. Nauk. 17 (1962), 57-110. (English translation in Russian Math. Surveys, 53, 104). MR 142001
  • [KI2] A. A. Kirillov, Elements of the theory of representations, Springer-Verlag, Berlin and New York, 1976. MR 412321
  • [KO1] B. Kostant, Quantization and unitary representations: Part I, Prequantization, Lecture Notes in Math., vol. 170, Springer-Verlag, Berlin and New York, 1970, pp. 87-208. MR 294568
  • Bertram Kostant, The solution to a generalized Toda lattice and representation theory, Adv. in Math. 34 (1979), no. 3, 195–338. MR 550790, https://doi.org/10.1016/0001-8708(79)90057-4
  • [LA1] J. L. Lagrange, Mémoire sur la théorie des variations des éléments des planètes, Mémoires de la classe des sciences mathématiques et physiques de l'institut de France, 1808, pp. 1-72.
  • [LA2] J. L. Lagrange, Second mémoire sur la théorie de la variation des constantes arbitraires dans les problèmes de mécanique, Mémoires de la classe des sciences mathématiques et physiques de l'institut de France 1809, pp. 343-352.
  • Robert G. Littlejohn, A guiding center Hamiltonian: a new approach, J. Math. Phys. 20 (1979), no. 12, 2445–2458. MR 553507, https://doi.org/10.1063/1.524053
  • [M] G.-M. Marle, Symplectic manifolds, dynamical groups, and Hamiltonian mechanics, in Differential Geometry and Relativity (Cahen and Flato (eds.)), D. Reidel, Dordrecht, 1976, pp. 249-269. MR 438393
  • [MA-W] J. Marsden and A. Weinstein, Reduction of symplectic manifolds with symmetry, Reports on Math. Phys. 5 (1974), 121-130. MR 402819
  • [MAS] V. P. Maslov, Théorie des perturbations et méthodes asymptotiques, Dunod, Gauthier-Villars, Paris, 1972. (Translation of 1965 Russian edition.)
  • [MEL1] R. B. Melrose, Equivalence of glancing hypersurfaces, Invent. Math. 37 (1976), 165-191. MR 436225
  • R. B. Melrose, Forward scattering by a convex obstacle, Comm. Pure Appl. Math. 33 (1980), no. 4, 461–499. MR 575734, https://doi.org/10.1002/cpa.3160330402
  • [MEY] K. Meyer, Symmetries and integrals in mechanics, in Dynamical Systems (M. Peixoto (ed)), Academic Press, New York, 1973, pp. 259-273. MR 331427
  • [MI-F] A. S. Miščenko and A. T. Fomenko, Euler equations on finite-dimensional Lie groups, Math. USSR-Izv. 12 (1978), 371-389. MR 482832
  • [MO] J. Moser, A fixed point theorem in symplectic geometry, Acta Math. 141 (1978), 17-34. MR 478228
  • [R-W] L. Rothschild and J. Wolf, Representations of semi-simple groups associated to nilpotent orbits, Ann. Sci. École Norm. Sup. (4) 7 (1974), 155-174. MR 357690
  • [S-K-K] M. Sato, T. Kawai and M. Kashiwara, Microfunctions and partial differential equations, Lecture Notes in Math., vol. 287, Springer-Verlag, Berlin and New York, 1973, pp. 265-529. MR 420735
  • [SE] I. E. Segal, Quantization of nonlinear systems, J. Math. Phys. 1 (1960), 468-488. MR 135093
  • Barry Simon, The classical limit of quantum partition functions, Comm. Math. Phys. 71 (1980), no. 3, 247–276. MR 565281
  • Jędrzej Śniatycki, Geometric quantization and quantum mechanics, Applied Mathematical Sciences, vol. 30, Springer-Verlag, New York-Berlin, 1980. MR 554085
  • [SN-T] J. Sniatycki and W. M. Tulczyjew, Generating forms of lagrangian submanifolds, Indiana Univ. Math. J. 22 (1972), 267-275. MR 305297
  • [SO] J.-M. Souriau, Structure des systemes dynamiques, Dunod, Paris, 1970. MR 260238
  • [ST] S. Sternberg, Celestial mechanics. II, W. A. Benjamin, New York, 1969.
  • [T] M. E. Taylor, Grazing rays and reflection of singularities of solutions to wave equations, Comm. Pure Appl. Math. 24 (1976), 1-38. MR 397175
  • [WA] N. R. Wallach, Symplectic geometry and Fourier analysis, Math. Sci. Press, Brookline, Mass., 1977. MR 488148
  • [WE1] A. Weinstein, On Maslov's quantization condition, Lecture Notes in Math., vol. 459, Springer-Verlag, Berlin and New York, 1975, pp. 341-372. MR 436231
  • [WE2] A. Weinstein, Fourier integral operators, quantization, and the spectra of riemannian manifolds, Colloques Internationaux du CNRS 237 (1976), 289-298. MR 650990
  • [WE3] A. Weinstein, Lectures on symplectic manifolds, CBMS Regional Conf. Series, no. 29, Amer. Math. Soc., Providence, R. I., 1977. MR 464312
  • [WE4] A. Weinstein, The symplectic "category, " Proc. Conf. Differential Geometric Methods in Mathematical Physics (Clausthal-Zellerfeld, 1980) (in preparation).
  • Hermann Weyl, The classical groups, Princeton Landmarks in Mathematics, Princeton University Press, Princeton, NJ, 1997. Their invariants and representations; Fifteenth printing; Princeton Paperbacks. MR 1488158

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1980): 58F05

Retrieve articles in all journals with MSC (1980): 58F05


Additional Information

DOI: https://doi.org/10.1090/S0273-0979-1981-14911-9

American Mathematical Society