Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Differentiable dynamical systems and the problem of turbulence


Author: David Ruelle
Journal: Bull. Amer. Math. Soc. 5 (1981), 29-42
MSC (1980): Primary 76A, 58F
DOI: https://doi.org/10.1090/S0273-0979-1981-14917-X
MathSciNet review: 614312
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. F. Ahlers, Low-temperature studies of the Rayleigh-Bénard instability and turbulence, Phys. Rev. Lett. 33 (1974), 1185-1188.
  • 2. R. Bowen, On Axiom A diffeomorphisms, CBMS Regional Conf. Series, No. 35, Amer. Math. Soc., Providence, R. I., 1978. MR 482842
  • 3. R. Bowen and D. Ruelle, The ergodic theory of Axiom A flows, Invent. Math. 29 (1975), 181-202. MR 380889
  • 4. M. Campanino and H. Epstein, On the existence of Feigenbaum’s fixed point, Comm. Math. Phys. 79 (1981), no. 2, 261–302. MR 612250
  • 5. P. Collet, J.-P. Eckmann and H. Koch, Period doubling bifurcations for families of maps on R (to appear).
  • 6. P. Collet, J.-P. Eckmann, and O. E. Lanford III, Universal properties of maps on an interval, Comm. Math. Phys. 76 (1980), no. 3, 211–254. MR 588048
  • 7. James H. Curry, On the Hénon transformation, Comm. Math. Phys. 68 (1979), no. 2, 129–140. MR 543195
  • 8. M. J. Feigenbaum, Quantitative universality for a class of nonlinear transformations, J. Statist. Phys. 19 (1978), 25-52. MR 501179
  • 9. Mitchell J. Feigenbaum, The universal metric properties of nonlinear transformations, J. Statist. Phys. 21 (1979), no. 6, 669–706. MR 555919, https://doi.org/10.1007/BF01107909
  • 10. Mitchell J. Feigenbaum, The transition to aperiodic behavior in turbulent systems, Comm. Math. Phys. 77 (1980), no. 1, 65–86. MR 588687
  • 11. S. D. Feit, Characteristic exponents and strange attractors, Comm. Math. Phys. 61 (1978), 249-260. MR 501172
  • 12. C. Foiaş and G. Prodi, Sur le comportement global des solutions nonstationnaires des équations de Navier-Stokes en dimension 2, Rend. Sem. Mat. Univ. Padova 39 (1967), 1-34. MR 223716
  • 13. C. Foiaş and R. Temam, Some analytic and geometric properties of the solutions of the evolution Navier-Stokes equations, J. Math. Pures Appl. (9) 58 (1979), no. 3, 339–368. MR 544257
  • 14. U. Frisch, P.-L. Sulem and M. Nelkin, A simple dynamical model of intermittent fully developed turbulence, J. Fluid Mech. 87 (1978), 719-736.
  • 15. H. Fugita and T. Kato, On the Navier-Stokes initial value problem. I, Arch. Rational Mech. Anal. 16 (1964), 269-315. MR 166499
  • 16. V. Girault and P.-A. Raviart, Finite element approximation of the Navier-Stokes equations, Lecture Notes in Mathematics, vol. 749, Springer-Verlag, Berlin-New York, 1979. MR 548867
  • 17. J. P. Gollub and H. L. Swinney, Onset of turbulence in a rotating fluid, Phys. Rev. Lett. 35 (1975), 927-930.
  • 18. J. Guckenheimer, A strange, strange attractor, The Hopf Bifurcation Theorem and Its Applications (J. E. Marsden and M. Mc Cracken, eds.) Springer-Verlag, Berlin and New York, 1976, pp. 368-381.
  • 19. John Guckenheimer and R. F. Williams, Structural stability of Lorenz attractors, Inst. Hautes Études Sci. Publ. Math. 50 (1979), 59–72. MR 556582
  • 20. M. Hénon, A two-dimensional mapping with a strange attractor, Comm. Math. Phys. 50 (1976), 69-77. MR 422932
  • 21. M. Hirsch, C. Pugh and M. Shub, Invariant manifolds, Lecture Notes in Math., vol. 583, Springer-Verlag, Berlin and New York, 1977. MR 501173
  • 22. E. Hopf, Abzweigung einer periodischen Lösung von einer stationaren Lösung eines Differentialsystems, Ber. Math.-Phys. K. Sächs. Akad. Wiss. Leipzig 94 (1942), 1-22.
  • 23. E. Hopf, A mathematical example displaying the features of turbulence, Comm. Pure Appl. Math. 1 (1948), 303-322. MR 30113
  • 24. G. Iooss, Existence et stabilité de la solution périodique secondaire intervenant dans les problèmes d'évolution de type Navier-Stokes, Arch. Rational Mech. Anal. 47 (1972), 301-329. MR 346350
  • 25. G. Iooss, Sur la deuxième bifurcation d'une solution stationnaire de systèmes du type Navier-Stokes, Arch. Rational Mech. Anal. 64 (1977), 339-369. MR 650472
  • 26. A. Katok, unpublished.
  • 27. Ju. I. Kifer, On the limiting behavior of invariant measures of small random perturbations for some smooth dynamical systems, Dokl. Akad. Nauk SSSR 216 (5) (1974) = Soviet Math. Dokl. 15 (1941), 918-921. MR 356255
  • 28. Ju. I. Kifer, On small random perturbations of some smooth dynamical systems, Izv. Akad. Nauk SSSR Ser. Mat. 38 (5) (1974), 1091-1115 = Math. USSR-Izv. 8 (1974), 1083-1107. MR 388452
  • 29. A. N. Kolmogorov, Local structure of turbulence in an incompressible fluid at very high Reynolds numbers, Dokl. Akad. Nauk SSSR 30 (1941), 299-303.
  • 30. O. A. Ladyzhenskaya, The mathematical theory of viscous incompressible flow, 2nd ed., Nauka, Moscow, 1970; 2nd English ed., Gordon and Breach, New York, 1969. MR 254401
  • 31. O. A. Ladyzhenskaya, A dynamical system generated by the Navier-Stokes equations, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov 27 (1972), 91-115 = J. Soviet Math. 3 (1976), 458-479. MR 328378
  • 32. L. D. Landau, Turbulence, Dokl. Akad. Nauk SSSR 44 (1944), 339-342.
  • 33. Oscar E. Lanford III, Remarks on the accumulation of period-doubling bifurcations, Mathematical problems in theoretical physics (Proc. Internat. Conf. Math. Phys., Lausanne, 1979) Lecture Notes in Phys., vol. 116, Springer, Berlin-New York, 1980, pp. 340–342. MR 582642
  • 34. Jean Leray, Sur le mouvement d’un liquide visqueux emplissant l’espace, Acta Math. 63 (1934), no. 1, 193–248 (French). MR 1555394, https://doi.org/10.1007/BF02547354
  • 35. A. Libchaber et J. Maurer, Une expérience de Rayleigh-Bénard de géométrie réduite; multiplication, accrochage et démultiplication de fréquences, J. Physique (to appear).
  • 36. J. L. Lions, Quelques méthodes de résolution des problèmes aux limites non-linéaires, Dunod, Paris, 1969. MR 259693
  • 37. E. N. Lorenz, Deterministic non-periodic flow, J. Atmosphere Sci. 20 (1963), 130-141.
  • 38. J. Mallet-Paret, Negatively invariant sets of compact maps and an extension of a theorem of Cartwright, J. Differential Equations 22 (1976), 331-348. MR 423399
  • 39. Ricardo Mañé, On the dimension of the compact invariant sets of certain nonlinear maps, Dynamical systems and turbulence, Warwick 1980 (Coventry, 1979/1980), Lecture Notes in Math., vol. 898, Springer, Berlin-New York, 1981, pp. 230–242. MR 654892
  • 40. Ricardo Mañé, Lyapounov exponents and stable manifolds for compact transformations, Geometric dynamics (Rio de Janeiro, 1981) Lecture Notes in Math., vol. 1007, Springer, Berlin, 1983, pp. 522–577. MR 730286, https://doi.org/10.1007/BFb0061433
  • 41. J. E. Marsden and M. McCracken, The Hopf bifurcation and its applications, Applied Math. Sci., vol. 19, Springer-Verlag, Berlin and New York, 1976. MR 494309
  • 42. A. S. Monin, On the nature of turbulence; Russian transl., Soviet Phys. Uspekhi 125 (1978), no. 1, 97–122. MR 545760
  • 43. Ju. I. Naimark, On some cases of dependence of periodic solutions on parameters, Dokl. Akad. Nauk SSSR 129 (4) (1959), 736-739. MR 132256
  • 44. S. Newhouse, Diffeomorphisms with infinitely many sinks, Topology 13 (1974), 9-18. MR 339291
  • 45. Sheldon E. Newhouse, The abundance of wild hyperbolic sets and nonsmooth stable sets for diffeomorphisms, Inst. Hautes Études Sci. Publ. Math. 50 (1979), 101–151. MR 556584
  • 46. V. I. Oseledec, A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems, Trudy Moskov. Mat. Obšč. 19 (1968), 197-221. MR 240280
  • 47. Ya. B. Pesin, Lyapunov characteristic exponents and ergodic properties of smooth dynamical systems with an inveriant measure, Dokl. Akad. Nauk SSSR 226 (4) (1976), 774-777 = Soviet Math. Dokl. 17 (1) (1976), 196-199. MR 410804
  • 48. Ya. B. Pesin, Invariant manifold families which correspond to nonvanishing characteristic exponents, Izv. Akad. Nauk SSSR Ser. Mat. 40 (6) (1976), 1332-1379 = Math. USSR-Izv. 10 (6) (1976), 1261-1305. MR 458490
  • 49. Ya. B. Pesin, Lyapunov characteristic exponents and smooth ergodic theory, Uspehi Mat. Nauk 32 (4) (196) (1977), 55-112 = Russian Math. Surveys 32 (4) (1977), 55-114. MR 466791
  • 50. R. V. Plykin, Sources and currents of A-diffeomorphisms of surfaces, Mat. Sb. 94 2(6) (1974), 243-264. MR 356137
  • 51. H. Poincaré, Théorie des tourbillons, Georges Carré, Paris, 1893.
  • 52. Charles Pugh and Michael Shub, Stable ergodicity and julienne quasi-conformality, J. Eur. Math. Soc. (JEMS) 2 (2000), no. 1, 1–52. MR 1750453, https://doi.org/10.1007/s100970050013
  • 53. M. S. Raghunathan, A proof of Oseledec’s multiplicative ergodic theorem, Israel J. Math. 32 (1979), no. 4, 356–362. MR 571089, https://doi.org/10.1007/BF02760464
  • 54. D. Ruelle, A measure associated with Axiom A attractors, Amer. J. Math. 98 (1976), 619-654. MR 415683
  • 55. David Ruelle, An inequality for the entropy of differentiable maps, Bol. Soc. Brasil. Mat. 9 (1978), no. 1, 83–87. MR 516310, https://doi.org/10.1007/BF02584795
  • 56. David Ruelle, Dynamical systems with turbulent behavior, Mathematical problems in theoretical physics (Proc. Internat. Conf., Univ. Rome, Rome, 1977) Lecture Notes in Phys., vol. 80, Springer, Berlin-New York, 1978, pp. 341–360. MR 518445
  • 57. David Ruelle, Sensitive dependence on initial condition and turbulent behavior of dynamical systems, Bifurcation theory and applications in scientific disciplines (Papers, Conf., New York, 1977) Ann. New York Acad. Sci., vol. 316, New York Acad. Sci., New York, 1979, pp. 408–416. MR 556846
  • 58. David Ruelle, Ergodic theory of differentiable dynamical systems, Inst. Hautes Études Sci. Publ. Math. 50 (1979), 27–58. MR 556581
  • 59. David Ruelle, Characteristic exponents and invariant manifolds in Hilbert space, Ann. of Math. (2) 115 (1982), no. 2, 243–290. MR 647807, https://doi.org/10.2307/1971392
  • 60. David Ruelle, Sensitive dependence on initial condition and turbulent behavior of dynamical systems, Bifurcation theory and applications in scientific disciplines (Papers, Conf., New York, 1977) Ann. New York Acad. Sci., vol. 316, New York Acad. Sci., New York, 1979, pp. 408–416. MR 556846
  • 61. David Ruelle and Michael Shub, Stable manifolds for maps, Global theory of dynamical systems (Proc. Internat. Conf., Northwestern Univ., Evanston, Ill., 1979) Lecture Notes in Math., vol. 819, Springer, Berlin, 1980, pp. 389–392. MR 591198
  • 62. D. Ruelle and F. Takens, On the nature of turbulence, Comm. Math. Phys. 20 (1971), 167-192; note 23 (1971), 343-344. MR 284067
  • 63. R. J. Sacker, On invariant surfaces and bifurcation of periodic solutions of ordinary differential equations, Thesis, New York University, 1964.
  • 64. V. Scheffer, Turbulence and Hausdorff dimension, Turbulence and Navier-Stokes Equation, Lecture Notes in Math., vol. 565, Springer-Verlag, Berlin and New York, 1979, pp. 94-112. MR 452123
  • 65. Vladimir Scheffer, The Navier-Stokes equations on a bounded domain, Comm. Math. Phys. 73 (1980), no. 1, 1–42. MR 573611
  • 66. Ia. G. Sinai, Gibbs measure in ergodic theory, Uspehi Mat. Nauk 27 (4) (1972), 21-64 = Russian Math. Surveys 27 (4) (1972), 21-69. MR 399421
  • 67. S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967), 747-817. MR 228014
  • 68. H. L. Swinney and J. P. Gollub, The transition to turbulence, Physics Today 31 (1978), 41-49.
  • 69. G. I. Taylor, Stability of a viscous liquid contained between two rotating cylinders, Philos. Trans. Roy. Soc. London Ser. A 223 (1923), 289-343.
  • 70. Roger Temam, Navier-Stokes equations, Revised edition, Studies in Mathematics and its Applications, vol. 2, North-Holland Publishing Co., Amsterdam-New York, 1979. Theory and numerical analysis; With an appendix by F. Thomasset. MR 603444
  • 71. P. Walters, Characteristic exponents and the entropy of diffeomorphisms, preprint. MR 254862
  • 72. R. F. Williams, The structure of Lorenz attractors, Inst. Hautes Études Sci. Publ. Math. 50 (1979), 73–99. MR 556583

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1980): 76A, 58F

Retrieve articles in all journals with MSC (1980): 76A, 58F


Additional Information

DOI: https://doi.org/10.1090/S0273-0979-1981-14917-X

American Mathematical Society