Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.


Full text of review: PDF
Book Information:

Author: Yiannis N. Moschovakis
Title: Descriptive set theory
Additional book information: Studies in Logic and the Foundations of Mathematics, vol. 100, North-Holland Publishing Company, Amsterdam, 1980, xii + 637 pp.,$73.25.

References [Enhancements On Off] (What's this?)

  • 1. P. Aleksandrov, Sur la puissance des ensembles measurables B, C. R. Acad. Sci. U. S. A. 162 (1916), 323-325.
  • 2. R. Baire, Sur les fonctions de variables réelles, Annali di Mat. Ser. III 3 (1899), 1-123.
  • 3. Ivar Bendixson, Quelques theorèmes, Acta Math. 2 (1883), no. 1, 415–429 (French). De la théorie des ensembles de points Extrait d’une lettre adressée à M. Cantor à Halle. MR 1554609, 10.1007/BF02415227
  • 4. David Blackwell, Infinite games and analytic sets, Proc. Nat. Acad. Sci. U.S.A. 58 (1967), 1836–1837. MR 0221466
  • 5. E. Borel, Leçons sur la théorie des fonctions, Gauthier-Villars, Paris, 1898.
  • 6. E. Borel, Leçons sur les fonctions de variables réelles, Gauthier-Villars, Paris, 1905.
  • 7. Paul Cohen, The independence of the continuum hypothesis, Proc. Nat. Acad. Sci. U.S.A. 50 (1963), 1143–1148. MR 0157890
  • 8. S. Feferman and A. Lévy, Independence results in set theory by Cohen's method. II, Notices Amer. Math. Soc. 10 (1963), 593.
  • 9. David Gale and F. M. Stewart, Infinite games with perfect information, Contributions to the theory of games, vol. 2, Annals of Mathematics Studies, no. 28, Princeton University Press, Princeton, N. J., 1953, pp. 245–266. MR 0054922
  • 10. Kurt Gödel, Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I, Monatsh. Math. Phys. 38 (1931), no. 1, 173–198 (German). MR 1549910, 10.1007/BF01700692
  • 11. K. Gödel, The consistency of the axiom of choice and of the generalized continuum hypothesis, Proc. Nat. Acad. Sci. U. S. A. 24 (1938), 556-557.
  • 12. Leo Harrington, Analytic determinacy and 0^{♯}, J. Symbolic Logic 43 (1978), no. 4, 685–693. MR 518675, 10.2307/2273508
  • 13. F. Hausdorff, Die Mächtigkeit der Borelschen Mengen, Math. Ann. 77 (1916), no. 3, 430–437 (German). MR 1511869, 10.1007/BF01475871
  • 14. Stephen Cole Kleene, Introduction to metamathematics, D. Van Nostrand Co., Inc., New York, N. Y., 1952. MR 0051790
  • 15. M. Kondô, Sur l'uniformisation des complémentaires analytiques et les ensembles projectifs de la seconde class, Japan J. Math. 15 (1938), 197-230.
  • 16. H. Lebesgue, Intégrale, longuer, aire, Thèse, Paris, 1902.
  • 17. H. Lebesgue, Sur les fonctions représentables analytiquement, Journal de Math. Sér. 6 1 (1905), 139-216.
  • 18. Donald A. Martin, Measurable cardinals and analytic games, Fund. Math. 66 (1969/1970), 287–291. MR 0258637
  • 19. Donald A. Martin, Borel determinacy, Ann. of Math. (2) 102 (1975), no. 2, 363–371. MR 0403976
  • 20. Donald A. Martin, Infinite games, Proceedings of the International Congress of Mathematicians (Helsinki, 1978), Acad. Sci. Fennica, Helsinki, 1980, pp. 269–273. MR 562614
  • 21. Donald A. Martin, A theorem on hyperhypersimple sets, J. Symbolic Logic 28 (1963), 273–278. MR 0177887
  • 22. Jan Mycielski and H. Steinhaus, A mathematical axiom contradicting the axiom of choice, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 10 (1962), 1–3. MR 0140430
  • 23. Jan Mycielski and S. Świerczkowski, On the Lebesgue measurability and the axiom of determinateness, Fund. Math. 54 (1964), 67–71. MR 0161788
  • 24. W. Sierpiński, Les ensembles projectifs et analytiques, Mémor. Sci. Math., no. 112, Gauthier-Villars, Paris, 1950 (French). MR 0052484
  • 25. Jack H. Silver, Counting the number of equivalence classes of Borel and coanalytic equivalence relations, Ann. Math. Logic 18 (1980), no. 1, 1–28. MR 568914, 10.1016/0003-4843(80)90002-9
  • 26. Robert M. Solovay, A model of set-theory in which every set of reals is Lebesgue measurable, Ann. of Math. (2) 92 (1970), 1–56. MR 0265151
  • 27. M. Suslin, Sur une définition des ensembles measurables B sans nombres transfinis, C. R. Acad. Sci. Paris Sér. A 164 (1917), 88-91.
  • 28. S. Ulam, Scottish Book, Los Alamos, 1957.
  • 29. S. M. Ulam, Adventures of a mathematician, Charles Scribner’s Sons, New York, 1976. MR 0485098
  • 30. E. Zermelo, Beweis, daß jede Menge wohlgeordnet werden kann, Math. Ann. 59 (1904), no. 4, 514–516 (German). MR 1511281, 10.1007/BF01445300

Review Information:

Reviewer: Thomas Jech
Journal: Bull. Amer. Math. Soc. 5 (1981), 339-349
DOI: http://dx.doi.org/10.1090/S0273-0979-1981-14952-1