Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Bulletin of the American Mathematical Society
Bulletin of the American Mathematical Society
ISSN 1088-9485(online) ISSN 0273-0979(print)

 

The mathematical approach to the sonic barrier


Author: Cathleen Synge Morawetz
Journal: Bull. Amer. Math. Soc. 6 (1982), 127-145
MSC (1980): Primary 76H05; Secondary 35M05
MathSciNet review: 640941
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. W. F. Ballhaus and P. M. Goorjian, Implicit finite difference computations of unsteady transonic flows about airfoils, A.I.A.A. Journal 15 (1977); see also 17 (1979).
  • 2. F. Bauer, P. Garabedian and D. Korn, A theory of supercritical wing sections with computer programs and examples, Lecture Notes in Econom. and Math. Syst., vol. 66, Springer-Verlag, Berlin and New York, 1972. See also with A. Jameson, II, 108, same series and III, 150, same series.
  • 3. Lipman Bers, Existence and uniqueness of a subsonic flow past a given profile, Comm. Pure Appl. Math. 7 (1954), 441–504. MR 0065334 (16,417a)
  • 4. Haïm Brézis and Guido Stampacchia, The hodograph method in fluid-dynamics in the light of variational inequalities, Arch. Rational Mech. Anal. 61 (1976), no. 1, 1–18. MR 0477505 (57 #17029)
  • 5. A. Busemann, Widerstand bei geschwindigkeiten naher der schallgeschwindigkeiten, Proc. Third Internat. Congr. Appl. Mech. 1 (1930), 282-285.
  • 6. Adolf Busemann, The nonexistence of transonic potential flow, Proceedings of Symposia in Applied mathematics, vol. IV, Fluid dynamics, McGraw-Hill Book Company, Inc., New York-Toronto-London, 1953, pp. 29–39. MR 0057115 (15,176c)
  • 7. S. Chaplygin, Gas jets, Tech. Memos. Nat. Adv. Comm. Aeronaut., 1944 (1944), no. 1063, 112 pp. (3 plates). MR 0015979 (7,495h)
  • 8. T. M. Cherry, Flow of a compressible fluid about a cylinder, Proc. Roy. Soc. London. Ser. A. 192 (1947), 45–79. MR 0024754 (9,544e)
  • 9. L. Pamela Cook, A uniqueness proof for a transonic flow problem, Indiana Univ. Math. J. 27 (1978), no. 1, 51–71. MR 0483965 (58 #3916)
  • 10. Björn Engquist and Stanley Osher, Stable and entropy satisfying approximations for transonic flow calculations, Math. Comp. 34 (1980), no. 149, 45–75. MR 551290 (81b:65082), http://dx.doi.org/10.1090/S0025-5718-1980-0551290-1
  • 11. G. J. Fix, A mixed finite element scheme for transonic flows, ICASE, Hampton, Virginia, Report 76-25, 1976.
  • 12. F. I. Frankl, On the appearance of compression shocks in subsonic speeds, Prikl. Mat. Meh. 11 (1947), 199-202.
  • 13. K. O. Friedrichs, Symmetric positive linear differential equations, Comm. Pure Appl. Math. 11 (1958), 333–418. MR 0100718 (20 #7147)
  • 14. K. Y. Fung, H. Sobieczky, and R. Seebass, Shock-free wing design, AIAA J. 18 (1980), no. 10, 1153–1158. MR 586600 (81h:76033), http://dx.doi.org/10.2514/3.50865
  • 15. P. Garabedian and G. McFadden, Design of supercritical swept wings (preprint).
  • 16. P. Germain, Ecoulements transsoniques homogênes, Progress in Aeronautical Sciences, D. Küchenbaum and L. H. G. Sterne (eds.), Pergamon Press, New York, 1964.
  • 17. David Gilbarg, Comparison methods in the theory of subsonic flows, J. Rational Mech. Anal. 2 (1953), 233–251. MR 0054435 (14,920d)
  • 18. R. Glowinski and O. Pironneau, Calcul d’écoulements transoniques par des méthodes d’éléments finis et de contrôle optimal, Computing methods in applied sciences and engineering (Second Internat. Sympos., Versailles, 1975) Springer, Berlin, 1976, pp. 276–296. Lecture Notes in Econom. and Math. Systems, Vol. 134 (French). MR 0671118 (58 #32394)
  • 19. Gottfried Guderley, On the presence of shocks in mixed subsonic-supersonic flow patterns, Advances in Applied Mechanics, vol. 3, Academic Press Inc., New York, N. Y., 1953, pp. 145–184. MR 0055883 (14,1140d)
  • 20. Robert A. Hummel, The hodograph method for convex profiles, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 9 (1982), no. 3, 341–364. MR 681931 (84a:76015)
  • 21. Antony Jameson, Iterative solution of transonic flows over airfoils and wings, including flows at Mach 1, Comm. Pure Appl. Math. 27 (1974), 283–309. MR 0375942 (51 #12130)
  • 22. R. T. Jones, High speed wing theory, Princeton Univ. Press, Princeton, N.J., 1960.
  • 23. Th. von Kármán, Compressibility effects in aerodynamics, J. Aeronaut. Sci. 8 (1941), 337–356. MR 0005848 (3,220b)
  • 24. Theodore von Kármán, The engineer grapples with non-linear problems, Bull. Amer. Math. Soc. 46 (1940), 615–683. MR 0003131 (2,167d), http://dx.doi.org/10.1090/S0002-9904-1940-07266-0
  • 25. E. Koppe and G. Meier, Erfahrungen mit optischen methoden bei der Untersuchung transonischer Strömungen, Jahrgang 5 (1965), 150-157.
  • 26. S. N. Kružkov, First order quasilinear equations with several independent variables., Mat. Sb. (N.S.) 81 (123) (1970), 228–255 (Russian). MR 0267257 (42 #2159)
  • 27. M. A. Lavrent′ev and A. V. Bicadze, On the problem of equations of mixed type, Doklady Akad. Nauk SSSR (N.S.) 70 (1950), 373–376 (Russian). MR 0035371 (11,724b)
  • 28. M. J. Lighthill, On the hodograph transformation for high-speed flow. II. A flow with circulation, Quart. J. Mech. Appl. Math. 1 (1948), 442–450. MR 0029629 (10,641b)
  • 29. R. Magnus and H. Yoshihara, Inviscid transonic flow over airfoils, A.I.A.A. Journal 8 (1970), 2157-2162.
  • 30. Th. Meyer, Über zwei dimensionale Bewegungvorgange in einem Gas das mit Überschallgeschwingigkeitstrom, Forschungs hefte 62 (1908).
  • 31. M. S. Mock, Systems of conservation laws of mixed type, J. Differential Equations 37 (1980), no. 1, 70–88. MR 583340 (81m:35088), http://dx.doi.org/10.1016/0022-0396(80)90089-3
  • 32. Cathleen S. Morawetz, A weak solution for a system of equations of elliptic-hyperbolic type., Comm. Pure Appl. Math. 11 (1958), 315–331. MR 0096893 (20 #3375)
  • 33. Cathleen S. Morawetz, On the non-existence of continuous transonic flows past profiles. I, Comm. Pure Appl. Math. 9 (1956), 45–68. MR 0078130 (17,1149d)
  • 34. Cathleen S. Morawetz, The Dirichlet problem for the Tricomi equation, Comm. Pure Appl. Math. 23 (1970), 587–601. MR 0280062 (43 #5783)
  • 35. E. M. Murman and J. D. Cole, Calculation of plane steady transonic flows, A.I.A.A. Journal 9 (1971), 114-121.
  • 36. G. Y. Nieuwland, The computation by Lighthill's method of transonic potential flow around a family of quasi-elliptical aerofoils, Netherland N.L.R. Tech. Rep. T83, (1964). See also T.1 72.
  • 37. Olga Oleĭnik, Quasi-linear second-order parabolic equations with many independent variables, Seminari 1962/63 Anal. Alg. Geom. e Topol., Vol. 1, Ist. Naz. Alta Mat., Ediz. Cremonese, Rome, 1965, pp. 332–354. MR 0194763 (33 #2969)
  • 38. H. H. Pearcey, The aerodynamic design of section shapes for swept wings, Adv. in Aeronautical Sciences 3 (1962) 277-320.
  • 39. J. Rayleigh, On the flow of a compressible fluid past an obstacle, Philos. Mag. 32 (1916), 1-6.
  • 40. Friedrich Ringleb, Exakte Lösungen der Differentialgleichungen einer adiabatischen Gasströmung, Z. Angew. Math. Mech. 20 (1940), 185–198 (German). MR 0003140 (2,169e)
  • 41. Max Shiffman, On the existence of subsonic flows of a compressible fluid, J. Rational Mech. Anal. 1 (1952), 605–652. MR 0051651 (14,510b)
  • 42. G. I. Taylor, The flow around a body moving in a compressible fluid, Proc. Third Internat. Congr. Appl. Mech. 1 (1930), 263-275.
  • 43. F. Tricomi, Sulla equazione lineari alle derivate parziali di secondo ordine, di tipo misto, Rendiconti Atti del Accademia Nazionale dei Lincei, Series 5 14 (1923), 134-247.
  • 44. R. T. Whitcomb, Review of NASA supercritical airfoils, Ninth Internat. Congr. Aeronautical Sciences, Haifa, 1974.

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1980): 76H05, 35M05

Retrieve articles in all journals with MSC (1980): 76H05, 35M05


Additional Information

DOI: http://dx.doi.org/10.1090/S0273-0979-1982-14965-5
PII: S 0273-0979(1982)14965-5