Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 

 

Poincaré and algebraic geometry


Author: Phillip A. Griffiths
Journal: Bull. Amer. Math. Soc. 6 (1982), 147-159
DOI: https://doi.org/10.1090/S0273-0979-1982-14967-9
MathSciNet review: 640942
Full-text PDF Free Access

References | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. P. Appell and E. Goursat, Théorie des fonctions algébriques et de leurs intégrales, Gauthier-Villars, Paris, 1929.
  • 2. G. Castelnuovo and F. Enriques, Grundeigeshaften der Algebraischen Flächen, Encyklop. der Math. Wissenschaften, 3 (1903), 635-768.
  • 3. E. Picard and G. Simart, Théorie des fonctions algébriques de deux variables independentes, Gauthier-Villars, Paris, 1897-1906.
  • 4. Phillip Griffiths and Joseph Harris, Principles of algebraic geometry, Wiley-Interscience [John Wiley & Sons], New York, 1978. Pure and Applied Mathematics. MR 507725
  • 5. H. Poincare, Sur les Fonctions Abeliennes, Amer. J. Math. 8 (1886), no. 4, 289–342 (French). MR 1505429, https://doi.org/10.2307/2369391
  • 6. H. Poincaré, Remarques diverses sur les fonctions abéliennes, J. de Math., (5) series, 1 (1895), 219-314.
  • 7. H. Poincaré, Sur les résidus des intégrales doubles, Acta Math. 9 (1887), no. 1, 321–380 (French). MR 1554721, https://doi.org/10.1007/BF02406742
  • 8. Phillip A. Griffiths, On the periods of certain rational integrals. I, II, Ann. of Math. (2) 90 (1969), 460-495; ibid. (2) 90 (1969), 496–541. MR 0260733
  • 9. H. Poincaré, Sur les courbes tracées sur les surfaces algébriques, Ann. Sci. de l'École Norm. Sup. 27 (1910), 55-108.
  • 10. H. Poincaré, Sur les courbes tracées sur une surface algébrique, Sitz. der Berliner Math. Gesellschaft. 10 (1911), 28-55.
  • 11. Oscar Zariski, Algebraic surfaces, Second supplemented edition, Springer-Verlag, New York-Heidelberg, 1971. With appendices by S. S. Abhyankar, J. Lipman, and D. Mumford; Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 61. MR 0469915
  • 12. S. Lefschetz, l'Analysis situs et la géométrie algébrique, Gauthier-Villars, Paris, 1924.
  • 13. Phillip A. Griffiths, A theorem concerning the differential equations satisfied by normal functions associated to algebraic cycles, Amer. J. Math. 101 (1979), no. 1, 94–131. MR 527828, https://doi.org/10.2307/2373941
  • 14. Steven Zucker, Generalized intermediate Jacobians and the theorem on normal functions, Invent. Math. 33 (1976), no. 3, 185–222. MR 0412186, https://doi.org/10.1007/BF01404203
  • 15. Steven Zucker, Hodge theory with degenerating coefficients. 𝐿₂ cohomology in the Poincaré metric, Ann. of Math. (2) 109 (1979), no. 3, 415–476. MR 534758, https://doi.org/10.2307/1971221
  • 16. C. Herbert Clemens, Double solids, Adv. in Math. 47 (1983), no. 2, 107–230. MR 690465, https://doi.org/10.1016/0001-8708(83)90025-7
  • 17. Phillip A. Griffiths, Periods of integrals on algebraic manifolds. III. Some global differential-geometric properties of the period mapping, Inst. Hautes Études Sci. Publ. Math. 38 (1970), 125–180. MR 0282990
  • 18. Steven Zucker, The Hodge conjecture for cubic fourfolds, Compositio Math. 34 (1977), no. 2, 199–209. MR 0453741
  • 19. Phillip Griffiths, Infinitesimal invariant of normal functions, Topics in transcendental algebraic geometry (Princeton, N.J., 1981/1982) Ann. of Math. Stud., vol. 106, Princeton Univ. Press, Princeton, NJ, 1984, pp. 305–316. MR 756859
  • 20. E. Arbarello, M. Cornalba, P. Griffiths, and J. Harris, Topics in algebraic curves, Princeton Math. Series, Princeton Univ. Press, Princeton, N. J. (to appear)


Additional Information

DOI: https://doi.org/10.1090/S0273-0979-1982-14967-9