Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

The Cauchy-Riemann equations and differential geometry


Author: R. O. Wells Jr.
Journal: Bull. Amer. Math. Soc. 6 (1982), 187-199
MSC (1980): Primary 32-02, 53-01
DOI: https://doi.org/10.1090/S0273-0979-1982-14976-X
MathSciNet review: 640945
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. M. F. Atiyah, Geometry on Yang-Mills fields, Scuola Normale Superiore Pisa, Pisa, 1979. MR 554924
  • 2. M. S. Baouendi and F. Trèves, A property of the functions and distributions annihilated by a locally integrable system of complex vector fields, Ann. of Math. (2) 113 (1981), no. 2, 387–421. MR 607899, https://doi.org/10.2307/2006990
  • 3. S. Bergman, The kernel function and conformal mapping, Math. Surveys, no. 5, Amer. Math. Soc., Providence, R.I., 1950. MR 38439
  • 4. H. Behnke and P. Thullen, Theorie der Funktionen mehrerer komplexer Veränderlichen, 2nd ed., Ergebnisse der Math, und ihrer Grenzgebiete Band 51, Springer-Verlag, Berlin-New York, 1970. MR 271391
  • 5. S. Bochner, Analytic and meromorphic continuation by means of Green's formula, Ann. of Math. (2) 44 (1943), 652-673. MR 9206
  • 6. L. Boutet de Monvel, Integration des equations de Cauchy-Riemann induites formelles, Sèminaire Goulaouic-Lions-Schwartz (1974-75), Exposé No. 9, Centre Math. École Polytech., Paris, 1975. MR 409893
  • 7. Arthur B. Brown, On certain analytic continuations and analytic homeomorphisms, Duke Math. J. 2 (1936), no. 1, 20–28. MR 1545903, https://doi.org/10.1215/S0012-7094-36-00203-X
  • 8. Robert L. Bryant, Holomorphic curves in Lorentzian CR-manifolds, Trans. Amer. Math. Soc. 272 (1982), no. 1, 203–221. MR 656486, https://doi.org/10.1090/S0002-9947-1982-0656486-4
  • 9. D. Burns and S. Shnider, Real hypersurfaces in complex manifolds, Proc. Sympos. Pure Math., vol. 30, Amer. Math. Soc., Providence, R. I., 1977, pp. 141-168. MR 450603
  • 10. D. Burns, S. Shnider and R. O. Wells, Jr., Deformations of strongly pseudoconvex domains, Invent. Math. 46 (1978), 237-253. MR 481119
  • 11. C. Carathéodory, Über das Schwarze Lemma bei analytischen Funktionen von zwei komplexen Veränderlichen, Math. Ann. 97 (1926), 76-98.
  • 12. Élie Cartan, Sur la géométrie pseudo-conforme des hypersurfaces de l’espace de deux variables complexes II, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (2) 1 (1932), no. 4, 333–354 (French). MR 1556687
  • 13. S. S. Chern, On the projective structure of a real hypersurface in Cn+1, Math. Scand. 36 (1975), 74-82. MR 379910
  • 14. S. S. Chern and J. Moser, Real hypersurfaces in complex manifolds, Acta Math. 133 (1974), 219-271. MR 425155
  • 15. Paul R. Dippolito, Universal bundles for deformations of asymmetric structures, Trans. Amer. Math. Soc. 271 (1982), no. 1, 101–115. MR 648080, https://doi.org/10.1090/S0002-9947-1982-0648080-6
  • 16. James John Faran, Segre families and real hypersurfaces, Invent. Math. 60 (1980), no. 2, 135–172. MR 586425, https://doi.org/10.1007/BF01405151
  • 17. C. Fefferman, The Bergman kernel and biholomorphic mappings of pseudoconvex domains, Invent. Math. 26 (1974), 1-65. MR 350069
  • 18. C. Fefferman, Monge-Ampère equations, the Bergman kernel, and geometry of pseudoconvex domains, Ann. of Math. (2) 103 (1976), 395-416. MR 407320
  • 19. Charles Fefferman, Parabolic invariant theory in complex analysis, Adv. in Math. 31 (1979), no. 2, 131–262. MR 526424, https://doi.org/10.1016/0001-8708(79)90025-2
  • 20. G. B. Folland and J. J. Kohn, The Neumann problem for the Cauchy-Riemann complex, Ann. of Math. Studies, no. 75, Princeton Univ. Press, Princeton, N. J., 1972. MR 461588
  • 21. H. Granert and R. Remmert, Analytische Stellenalgebren, Springer, Berlin-Heidelberg-New York, 1971. MR 316742
  • 22. Robert E. Greene and Steven G. Krantz, Deformation of complex structures, estimates for the ∂ equation, and stability of the Bergman kernel, Adv. in Math. 43 (1982), no. 1, 1–86. MR 644667, https://doi.org/10.1016/0001-8708(82)90028-7
  • 23. R. C. Gunning and Hugo Rossi, Analytic functions of several complex variables, Prentice-Hall, Englewood Cliffs, N. J., 1965. MR 180696
  • 24. Fritz Hartogs, Zur Theorie der analytischen Funktionen mehrerer unabhängiger Veränderlichen, insbesondere über die Darstellung derselben durch Reihen, welche nach Potenzen einer Veränderlichen fortschreiten, Math. Ann. 62 (1906), no. 1, 1–88 (German). MR 1511365, https://doi.org/10.1007/BF01448415
  • 25. L. Hörmander, Linear partial differential operators, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1963. MR 161012
  • 26. Lars Hörmander, An introduction to complex analysis in several variables, 3rd ed., North-Holland Mathematical Library, vol. 7, North-Holland Publishing Co., Amsterdam, 1990. MR 1045639
  • 27. David S. Johnson, Biholomorphic equivalence in a class of graph domains, Indiana Univ. Math. J. 29 (1980), no. 3, 341–348. MR 570685, https://doi.org/10.1512/iumj.1980.29.29025
  • 28. A. Krzoska, Über die naturlichen Grenzen der analytischen Funktionen mehrerer Veränderlicher, Dissertation, Greifswald, 1933.
    28a. C. R. LeBrun, Jr., Spaces of complex geodesics and related structures, Thesis, Oxford University, 1980.

  • 29. E. E. Levi, Studii sui punti singolari essenziale delle funzioni analitiche di due o più variabili complesse, Annali di Mat. 17 (1909), 61-87.
  • 30. H. Lewy, On the local character of the solutions of an atypical linear differential equation in three variables and a related theorem for regular functions of two complex variables, Ann. of Math. (2) 64 (1956), 514-522. MR 81952
  • 31. H. Lewy, On hulls of holomorphy, Comm. Pure. Appl. Math. 13 (1960), 587-591. MR 150339
  • 32. J. Moser, Holomorphic equivalence and normal forms of hypersurfaces, Proc. Sympos. Pure Math., vol. 27, Part 2, Amer. Math. Soc., Providence, R. I., 1975, pp. 109-112. MR 435439
  • 33. L. Nirenberg, Lectures on linear partial differential equations, CBMS Reg. Conf. Ser. in Math., no. 17, Amer. Math. Soc. Providence, R. I., 1973. MR 450755
  • 34. R. Penrose, Nonlinear gravitons and curved twistor theory, Gen. Relativity and Gravitation 7 (1976), 31-52. MR 439004
  • 35. H. Poincaré, Les functions analytique de deux variables et la représentation conforme, Rend. Circ. Math. Palermo 23 (1907), 185-220 (or Oeuvres. IV, 244-289).
  • 36. W. F. Osgood, Lehrbuch der Funktionentheorie, 2nd. ed., vol. 2, part I, Teubner, Leipzig, 1929.
  • 37. B. Segre, Questioni geometriche legate colla teoria delle funzioni di due variabili complesse, Rend. Sem. Mat. Roma 7 (1931), 59-107.
  • 37. B. Segre, Interno al problema di Poincaré della rappresentazione pseudoconforme, Rend. Acc. Lincei 13 (1931), pp. 676-683.
  • 38. F. Sommer, Komplex analytische Blätterung reeler Mannigfaltigkeiten im Cn, Math. Ann. 136 (1958), 111-133. MR 101924
  • 39. N. Tanaka, On the pseudo-conformal geometry of hypersurfaces of the space of n complex variables, J. Math. Soc. Japan 14 (1962), 397-429. MR 145555
  • 40. N. Tanaka, Graded Lie algebras and geometric structures, Proc. U.S.-Japan Seminar in Differential Geometry, (Kyoto, 1965), Nippon Hyoronsha, Tokyo, 1966, pp. 147-150. MR 222802
  • 41. N. Tanaka, On non-degenerate real hypersurfaces, graded Lie algebras, and Cartan connections, Japan. J. Math. 2 (1976), 131-190. MR 589931
  • 42. M. A. Tresse, Détermination des invariants ponctuels de l'equation différentielle ordinaire du second order y" = w (x, y, y'), S. Hirzel, Leipzig, 1896.
  • 43. S. M. Webster, On the mapping problem for algebraic real hypersurfaces, Invent. Math. 43 (1977), 53-68. MR 463482
  • 44. S. M. Webster, On the Moser normal form at a non-umbilic point, Math. Ann. 233 (1978), no. 2, 97–102. MR 486511, https://doi.org/10.1007/BF01421918
  • 45. S. M. Webster, The rigidity of C-R hypersurfaces in a sphere, Indiana Univ. Math. J. 28 (1979), no. 3, 405–416. MR 529673, https://doi.org/10.1512/iumj.1979.28.28027
  • 46. R. O. Wells, Jr., Function theory on differentiable submanfolds, Contributions to Analysis, Academic Press, New York, 1974, pp. 407-441. MR 357856
  • 47. R. O. Wells Jr., Complex manifolds and mathematical physics, Bull. Amer. Math. Soc. (N.S.) 1 (1979), no. 2, 296–336. MR 520077, https://doi.org/10.1090/S0273-0979-1979-14596-8
  • 48. R. O. Wells Jr., Complex geometry in mathematical physics, Séminaire de Mathématiques Supérieures [Seminar on Higher Mathematics], vol. 78, Presses de l’Université de Montréal, Montreal, Que., 1982. Notes by Robert Pool. MR 654864

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1980): 32-02, 53-01

Retrieve articles in all journals with MSC (1980): 32-02, 53-01


Additional Information

DOI: https://doi.org/10.1090/S0273-0979-1982-14976-X

American Mathematical Society