Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 

 

The Cauchy-Riemann equations and differential geometry


Author: R. O. Wells Jr.
Journal: Bull. Amer. Math. Soc. 6 (1982), 187-199
MSC (1980): Primary 32-02, 53-01
MathSciNet review: 640945
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. M. F. Atiyah, Geometry on Yang-Mills fields, Scuola Normale Superiore Pisa, Pisa, 1979. MR 554924
  • 2. M. S. Baouendi and F. Trèves, A property of the functions and distributions annihilated by a locally integrable system of complex vector fields, Ann. of Math. (2) 113 (1981), no. 2, 387–421. MR 607899, 10.2307/2006990
  • 3. Stefan Bergman, The Kernel Function and Conformal Mapping, Mathematical Surveys, No. 5, American Mathematical Society, New York, N. Y., 1950. MR 0038439
  • 4. H. Behnke and P. Thullen, Theorie der Funktionen mehrerer komplexer Veränderlichen, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 51. Zweite, erweiterte Auflage. Herausgegeben von R. Remmert. Unter Mitarbeit von W. Barth, O. Forster, H. Holmann, W. Kaup, H. Kerner, H.-J. Reiffen, G. Scheja und K. Spallek, Springer-Verlag, Berlin-New York, 1970 (German). MR 0271391
  • 5. S. Bochner, Analytic and meromorphic continuation by means of Green’s formula, Ann. of Math. (2) 44 (1943), 652–673. MR 0009206
  • 6. L. Boutet de Monvel, Intégration des équations de Cauchy-Riemann induites formelles, Séminaire Goulaouic-Lions-Schwartz 1974–1975; Équations aux derivées partielles linéaires et non linéaires, Centre Math., École Polytech., Paris, 1975, pp. Exp. No. 9, 14 (French). MR 0409893
  • 7. Arthur B. Brown, On certain analytic continuations and analytic homeomorphisms, Duke Math. J. 2 (1936), no. 1, 20–28. MR 1545903, 10.1215/S0012-7094-36-00203-X
  • 8. Robert L. Bryant, Holomorphic curves in Lorentzian CR-manifolds, Trans. Amer. Math. Soc. 272 (1982), no. 1, 203–221. MR 656486, 10.1090/S0002-9947-1982-0656486-4
  • 9. D. Burns Jr. and S. Shnider, Real hypersurfaces in complex manifolds, Several complex variables (Proc. Sympos. Pure Math., Vol. XXX, Part 2, Williams Coll., Williamstown, Mass., 1975) Amer. Math. Soc., Providence, R.I., 1977, pp. 141–168. MR 0450603
  • 10. D. Burns Jr., S. Shnider, and R. O. Wells Jr., Deformations of strictly pseudoconvex domains, Invent. Math. 46 (1978), no. 3, 237–253. MR 0481119
  • 11. C. Carathéodory, Über das Schwarze Lemma bei analytischen Funktionen von zwei komplexen Veränderlichen, Math. Ann. 97 (1926), 76-98.
  • 12. Élie Cartan, Sur la géométrie pseudo-conforme des hypersurfaces de l’espace de deux variables complexes II, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (2) 1 (1932), no. 4, 333–354 (French). MR 1556687
  • 13. Shiing Shen Chern, On the projective structure of a real hypersurface in 𝐶_{𝑛+1}, Math. Scand. 36 (1975), 74–82. Collection of articles dedicated to Werner Fenchel on his 70th birthday. MR 0379910
  • 14. S. S. Chern and J. K. Moser, Real hypersurfaces in complex manifolds, Acta Math. 133 (1974), 219–271. MR 0425155
  • 15. Paul R. Dippolito, Universal bundles for deformations of asymmetric structures, Trans. Amer. Math. Soc. 271 (1982), no. 1, 101–115. MR 648080, 10.1090/S0002-9947-1982-0648080-6
  • 16. James John Faran, Segre families and real hypersurfaces, Invent. Math. 60 (1980), no. 2, 135–172. MR 586425, 10.1007/BF01405151
  • 17. Charles Fefferman, The Bergman kernel and biholomorphic mappings of pseudoconvex domains, Invent. Math. 26 (1974), 1–65. MR 0350069
  • 18. Charles L. Fefferman, Monge-Ampère equations, the Bergman kernel, and geometry of pseudoconvex domains, Ann. of Math. (2) 103 (1976), no. 2, 395–416. MR 0407320
  • 19. Charles Fefferman, Parabolic invariant theory in complex analysis, Adv. in Math. 31 (1979), no. 2, 131–262. MR 526424, 10.1016/0001-8708(79)90025-2
  • 20. G. B. Folland and J. J. Kohn, The Neumann problem for the Cauchy-Riemann complex, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1972. Annals of Mathematics Studies, No. 75. MR 0461588
  • 21. H. Grauert and R. Remmert, Analytische Stellenalgebren, Springer-Verlag, Berlin-New York, 1971 (German). Unter Mitarbeit von O. Riemenschneider; Die Grundlehren der mathematischen Wissenschaften, Band 176. MR 0316742
  • 22. Robert E. Greene and Steven G. Krantz, Deformation of complex structures, estimates for the ∂ equation, and stability of the Bergman kernel, Adv. in Math. 43 (1982), no. 1, 1–86. MR 644667, 10.1016/0001-8708(82)90028-7
  • 23. Robert C. Gunning and Hugo Rossi, Analytic functions of several complex variables, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1965. MR 0180696
  • 24. Fritz Hartogs, Zur Theorie der analytischen Funktionen mehrerer unabhängiger Veränderlichen, insbesondere über die Darstellung derselben durch Reihen, welche nach Potenzen einer Veränderlichen fortschreiten, Math. Ann. 62 (1906), no. 1, 1–88 (German). MR 1511365, 10.1007/BF01448415
  • 25. Lars Hörmander, Linear partial differential operators, Die Grundlehren der mathematischen Wissenschaften, Bd. 116, Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin-Göttingen-Heidelberg, 1963. MR 0161012
  • 26. Lars Hörmander, An introduction to complex analysis in several variables, 3rd ed., North-Holland Mathematical Library, vol. 7, North-Holland Publishing Co., Amsterdam, 1990. MR 1045639
  • 27. David S. Johnson, Biholomorphic equivalence in a class of graph domains, Indiana Univ. Math. J. 29 (1980), no. 3, 341–348. MR 570685, 10.1512/iumj.1980.29.29025
  • 28. A. Krzoska, Über die naturlichen Grenzen der analytischen Funktionen mehrerer Veränderlicher, Dissertation, Greifswald, 1933.
    28a. C. R. LeBrun, Jr., Spaces of complex geodesics and related structures, Thesis, Oxford University, 1980.

  • 29. E. E. Levi, Studii sui punti singolari essenziale delle funzioni analitiche di due o più variabili complesse, Annali di Mat. 17 (1909), 61-87.
  • 30. Hans Lewy, On the local character of the solutions of an atypical linear differential equation in three variables and a related theorem for regular functions of two complex variables, Ann. of Math. (2) 64 (1956), 514–522. MR 0081952
  • 31. Hans Lewy, On hulls of holomorphy, Comm. Pure Appl. Math. 13 (1960), 587–591. MR 0150339
  • 32. Jürgen Moser, Holomorphic equivalence and normal forms of hypersurfaces, Differential geometry (Proc. Sympos. Pure Math., Vol. XXVII, Part 2, Stanford Univ., Stanford, Calif., 1973) Amer. Math. Soc., Providence, R. I., 1975, pp. 109–112. MR 0435439
  • 33. Louis Nirenberg, Lectures on linear partial differential equations, American Mathematical Society, Providence, R.I., 1973. Expository Lectures from the CBMS Regional Conference held at the Texas Technological University, Lubbock, Tex., May 22–26, 1972; Conference Board of the Mathematical Sciences Regional Conference Series in Mathematics, No. 17. MR 0450755
  • 34. Roger Penrose, Nonlinear gravitons and curved twistor theory, General Relativity and Gravitation 7 (1976), no. 1, 31–52. The riddle of gravitation–on the occasion of the 60th birthday of Peter G. Bergmann (Proc. Conf., Syracuse Univ., Syracuse, N. Y., 1975). MR 0439004
  • 35. H. Poincaré, Les functions analytique de deux variables et la représentation conforme, Rend. Circ. Math. Palermo 23 (1907), 185-220 (or Oeuvres. IV, 244-289).
  • 36. W. F. Osgood, Lehrbuch der Funktionentheorie, 2nd. ed., vol. 2, part I, Teubner, Leipzig, 1929.
  • 37. B. Segre, Questioni geometriche legate colla teoria delle funzioni di due variabili complesse, Rend. Sem. Mat. Roma 7 (1931), 59-107.
  • 37. B. Segre, Interno al problema di Poincaré della rappresentazione pseudoconforme, Rend. Acc. Lincei 13 (1931), pp. 676-683.
  • 38. Friedrich Sommer, Komplex-analytische Blätterung reeller Mannigfaltigkeiten im 𝐶ⁿ, Math. Ann. 136 (1958), 111–133 (German). MR 0101924
  • 39. Noboru Tanaka, On the pseudo-conformal geometry of hypersurfaces of the space of 𝑛 complex variables, J. Math. Soc. Japan 14 (1962), 397–429. MR 0145555
  • 40. Noboru Tanaka, Graded Lie algebras and geometric structures, Proc. U.S.-Japan Seminar in Differential Geometry (Kyoto, 1965) Nippon Hyoronsha, Tokyo, 1966, pp. 147–150. MR 0222802
  • 41. Noboru Tanaka, On non-degenerate real hypersurfaces, graded Lie algebras and Cartan connections, Japan. J. Math. (N.S.) 2 (1976), no. 1, 131–190. MR 0589931
  • 42. M. A. Tresse, Détermination des invariants ponctuels de l'equation différentielle ordinaire du second order y" = w (x, y, y'), S. Hirzel, Leipzig, 1896.
  • 43. S. M. Webster, On the mapping problem for algebraic real hypersurfaces, Invent. Math. 43 (1977), no. 1, 53–68. MR 0463482
  • 44. S. M. Webster, On the Moser normal form at a non-umbilic point, Math. Ann. 233 (1978), no. 2, 97–102. MR 486511, 10.1007/BF01421918
  • 45. S. M. Webster, The rigidity of C-R hypersurfaces in a sphere, Indiana Univ. Math. J. 28 (1979), no. 3, 405–416. MR 529673, 10.1512/iumj.1979.28.28027
  • 46. R. O. Wells Jr., Function theory on differentiable submanifolds, Contributions to analysis (a collection of papers dedicated to Lipman Bers), Academic Press, New York, 1974, pp. 407–441. MR 0357856
  • 47. R. O. Wells Jr., Complex manifolds and mathematical physics, Bull. Amer. Math. Soc. (N.S.) 1 (1979), no. 2, 296–336. MR 520077, 10.1090/S0273-0979-1979-14596-8
  • 48. R. O. Wells Jr., Complex geometry in mathematical physics, Séminaire de Mathématiques Supérieures [Seminar on Higher Mathematics], vol. 78, Presses de l’Université de Montréal, Montreal, Que., 1982. Notes by Robert Pool. MR 654864

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1980): 32-02, 53-01

Retrieve articles in all journals with MSC (1980): 32-02, 53-01


Additional Information

DOI: https://doi.org/10.1090/S0273-0979-1982-14976-X