THE MULTIPLICITY OF EIGENVALUES

BY PETER D. LAX

There are many examples of first order $n \times n$ systems of partial differential equations in 2 space variables with real coefficients which are strictly hyperbolic; that is, they have simple characteristics. In this note we show that in 3 space variables there are no strictly hyperbolic systems if $n \equiv 2(4)$. Multiple characteristics of course influence the propagation of singularities. For a different context see Appendix 10 of [2].

\mathcal{M} denotes the set of all real $n \times n$ matrices with real eigenvalues. We call such a matrix nondegenerate if it has n distinct real eigenvalues.

THEOREM. Let A, B, C be three matrices such that all linear combinations

\[\alpha A + \beta B + \gamma C, \]

α, β, γ real, belong to \mathcal{M}. If $n \equiv 2 \pmod{4}$, then there exists α, β, γ real, $\alpha^2 + \beta^2 + \gamma^2 \neq 0$ such that (1) is degenerate.

REMARK 1. The theorem applies in particular to A, B, C real symmetric.

REMARK 2. The theorem shows that first order hyperbolic systems in three space variables of the indicated order always have some multiple characteristics.

PROOF. Denote by \mathcal{N} the set of nondegenerate matrices in \mathcal{M}. The normalized eigenvectors u of \mathcal{N} is \mathcal{N},

\[\mathcal{N} u_j = \lambda_j u_j, \quad |u_j| = 1, \quad j = 1, \ldots, n, \]

are determined up to a factor ± 1.

Let $\mathcal{N}(\theta), 0 < \theta < 2\pi$, be a closed curve in \mathcal{N}. If we fix $u_j(0)$, then $u_j(\theta)$ can be determined uniquely by requiring continuous dependence on θ. Since $\mathcal{N}(2\pi) = \mathcal{N}(0)$,

\[u_j(2\pi) = \tau_j u_j(0), \quad \tau_j = \pm 1. \]

Clearly

(i) Each τ_j is a homotopy invariant of the closed curve.

(ii) Each $\tau_j = 1$ when $\mathcal{N}(\theta)$ is constant.

Suppose now that the theorem is false; then

\[\mathcal{N}(\theta) = \cos \theta A + \sin \theta B \]

Received by the editors June 4, 1981.

1980 Mathematics Subject Classification. Primary 15A18, 57R99, 35L40.

© 1982 American Mathematical Society
0273-0979/81/0000-01 42/$01.00

213
is a closed curve in N. Note that $N(\pi) = -N(0)$; this shows that
\[
\begin{align*}
\lambda_j(\pi) &= -\lambda_{n-j+1}(0) \quad \text{and} \\
u_j(\pi) &= \rho_j u_{n-j+1}(0), \quad \rho_j = \pm 1.
\end{align*}
\]

Since the ordered basis $\{u_1(\theta), \ldots, u_n(\theta)\}$ is deformed continuously, it retains its orientation. Thus the ordered bases
\[
\{u_1(0), \ldots, u_n(0)\} \quad \text{and} \quad \{\rho_1 u_n(0), \ldots, \rho_n u_1(0)\}
\]
have the same orientation. For $n \equiv 2 \pmod{4}$, reversing the order reverses the orientation of an ordered base; this proves that
\[
\prod_{j=1}^n \rho_j = -1.
\]

This implies that there is a value of k for which
\[
\rho_k \rho_{n-k+1} = -1.
\]

Next we observe that $N(\theta + \pi) = -N(\theta)$; it follows from this that $\lambda_j(\theta + \pi) = -\lambda_{n-j+1}(\theta)$ and by (4) that
\[
u_j(2\pi) = \rho_{n-j+1} u_{n-j+1}(\pi).
\]
Combining this with (4) we get that $\tau_j = \rho_j \rho_{n-j+1}$. By (5), $\tau_k = -1$; this shows that the curve (3) is not homotopic to a point.

Suppose that all matrices of form (1), $\alpha^2 + \beta^2 + \gamma^2 = 1$, belonged to N. Then since the sphere is simply connected the curve (4) could be contracted to a point, contradicting $\tau_k = -1$.

See [1] for related matters.

ADDED IN PROOF. S. Friedland, J. Robbin and J. Sylvester have proved the theorem for all $n \equiv \pm 2, \pm 3, \pm 4 \pmod{8}$, and have shown it false for $n = 0, \pm 1 \pmod{8}$. They have further results involving linear combinations of more than 3 matrices.

REFERENCES

COURANT INSTITUTE OF MATHEMATICAL SCIENCES, NEW YORK UNIVERSITY, NEW YORK, NEW YORK 10012