Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.


Full text of review: PDF   This review is available free of charge.
Book Information:

Author: Leonard Lewin
Title: Polylogarithms and associated functions
Additional book information: North-Holland, Amsterdam, 1981, xvii + 359 pp., $54.95.

References [Enhancements On Off] (What's this?)

  • 1. N. H. Abel, Note sur la fonction ψx = x + x, Oeuvres complètes de Niels Hendrik Abel, Tome second, Christiania 1881; reprinted by Johnson Reprint Corp., New York, 1973, pp. 189-193.
  • 2. Spencer J. Bloch, Higher regulators, algebraic 𝐾-theory, and zeta functions of elliptic curves, CRM Monograph Series, vol. 11, American Mathematical Society, Providence, RI, 2000. MR 1760901
  • 3. Spencer Bloch, The dilogarithm and extensions of Lie algebras, Algebraic 𝐾-theory, Evanston 1980 (Proc. Conf., Northwestern Univ., Evanston, Ill., 1980) Lecture Notes in Math., vol. 854, Springer, Berlin-New York, 1981, pp. 1–23. MR 618298
  • 4. T. Clausen, Veber die Function sin φ + l/22sin 2φ + l/32sin3φ + etc., J. Reine Angew. Math. 8(1932), 298-300.
  • 5. L. Lewin, Dilogarithms and associated functions, Foreword by J. C. P. Miller, Macdonald, London, 1958. MR 0105524
  • 6. N. Lobachevsky, Imaginary geometry and its application to integration, Kasan, 1836 (Russian); German translation in N. J. Lobatschefskij's Imaginäre Geometrie und Anwendung der imaginären Geometrie auf einige Integrale, transl, by H. Liebmann, Abhand. Gesch. Math. (Leipzig) 19 (1904).
  • 7. L. Schläfli, On the multiple integral fn dx dy • • • dz, whose limits are p1 = a1x + b1y + • • • + h1z > 0, p2 > 0,• • •,pn >0, and x2 + y2 + • • • + z2 < 1, Quart. J. Math. 2 (1858), 269-301; 3 (1860), 54-68, 97-108. Reprinted in Gesammelte Mathematische Abhandlungen, Band II, Birkhäuser, Basel, 1953, pp. 219-270.
  • 8. W. Spence, An essay on the theory of the various orders of logarithmic transcendents, London and Edinburgh, 1809.
  • 9. W. Spence, Mathematical essays (J. F. W. Herschel, ed. ), London, 1820.
  • 10. W. Spence, Amer. Math. Monthly 88 (1981), 713.
  • 11. W. Thurston, Geometry and topology of 3-manifolds, Chapter 7, "Computation of volume", notes by J. W. Milnor, Lecture notes, Princeton, N. J.

Review Information:

Reviewer: Richard Askey
Journal: Bull. Amer. Math. Soc. 6 (1982), 248-251
DOI: https://doi.org/10.1090/S0273-0979-1982-14998-9