Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Bulletin of the American Mathematical Society
Bulletin of the American Mathematical Society
ISSN 1088-9485(online) ISSN 0273-0979(print)

Units and class groups in number theory and algebraic geometry


Author: Serge Lang
Journal: Bull. Amer. Math. Soc. 6 (1982), 253-316
MSC (1980): Primary 12A35, 12A90; Secondary 12G25, 10D12
MathSciNet review: 648522
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • Greg W. Anderson, Logarithmic derivatives of Dirichlet 𝐿-functions and the periods of abelian varieties, Compositio Math. 45 (1982), no. 3, 315–332. MR 656608 (84j:10041)
  • [An 2 ] G. Anderson, to appear.
  • A. A. Beĭlinson, Higher regulators and values of 𝐿-functions of curves, Funktsional. Anal. i Prilozhen. 14 (1980), no. 2, 46–47 (Russian). MR 575206 (81k:14020)
  • [Be ] R. Bergelson, The index of the Stickelberger ideal of order k on C(N), to appear Annals of Math.
  • [Bl ] S. Bloch, Algebraic K-theory and class field theory for arithmetic surfaces, to appear.
  • Fedor Alekseivich Bogomolov, Sur l’algébricité des représentations 𝑙-adiques, C. R. Acad. Sci. Paris Sér. A-B 290 (1980), no. 15, A701–A703 (French, with English summary). MR 574307 (81c:14025)
  • Pierrette Cassou-Noguès, Valeurs aux entiers négatifs des fonctions zêta et fonctions zêta 𝑝-adiques, Invent. Math. 51 (1979), no. 1, 29–59 (French). MR 524276 (80h:12009b), http://dx.doi.org/10.1007/BF01389911
  • [Co 1 ] J. Coates, p-adic L-functions and Iwasawa's theory, Durham Conference on algebraic number theory and class field theory, 1976.
  • [Co 2 ] J. Coates, Fonctions zeta partielles d'un corps de nombres totalement réel, Seminaire Delange-Pisot-Poitou, 1974-1975.
  • J. Coates and S. Lichtenbaum, On 𝑙-adic zeta functions, Ann. of Math. (2) 98 (1973), 498–550. MR 0330107 (48 #8445)
  • J. Coates and W. Sinnott, On 𝑝-adic 𝐿-functions over real quadratic fields, Invent. Math. 25 (1974), 253–279. MR 0354615 (50 #7093)
  • J. Coates and W. Sinnott, Integrality properties of the values of partial zeta functions, Proc. London Math. Soc. (3) 34 (1977), no. 2, 365–384. MR 0439815 (55 #12697)
  • J. Coates and A. Wiles, On the conjecture of Birch and Swinnerton-Dyer, Invent. Math. 39 (1977), no. 3, 223–251. MR 0463176 (57 #3134)
  • [Co-Wi 2 ] J. Coates and A. Wiles, Kummer's criterion for Hurwitz numbers, Kyoto Conference on Algebraic Number Theory, 1977.
  • J. Coates and A. Wiles, On 𝑝-adic 𝐿-functions and elliptic units, J. Austral. Math. Soc. Ser. A 26 (1978), no. 1, 1–25. MR 510581 (80a:12007)
  • H. Davenport and H. Heilbronn, On the density of discriminants of cubic fields. II, Proc. Roy. Soc. London Ser. A 322 (1971), no. 1551, 405–420. MR 0491593 (58 #10816)
  • P. Deligne, Valeurs de fonctions 𝐿 et périodes d’intégrales, Automorphic forms, representations and 𝐿-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2, Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 313–346 (French). With an appendix by N. Koblitz and A. Ogus. MR 546622 (81d:12009)
  • P. Deligne and M. Rapoport, Les schémas de modules de courbes elliptiques, Modular functions of one variable, II (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972), Springer, Berlin, 1973, pp. 143–316. Lecture Notes in Math., Vol. 349 (French). MR 0337993 (49 #2762)
  • V. G. Drinfel′d, Two theorems on modular curves, Funkcional. Anal. i Priložen. 7 (1973), no. 2, 83–84 (Russian). MR 0318157 (47 #6705)
  • Bruce Ferrero and Lawrence C. Washington, The Iwasawa invariant 𝜇_{𝑝} vanishes for abelian number fields, Ann. of Math. (2) 109 (1979), no. 2, 377–395. MR 528968 (81a:12005), http://dx.doi.org/10.2307/1971116
  • Georges Gras, Classes d’idéaux des corps abéliens et nombres de Bernoulli généralisés, Ann. Inst. Fourier (Grenoble) 27 (1977), no. 1, ix, 1–66 (French, with English summary). MR 0450238 (56 #8534)
  • Ralph Greenberg, On 𝑝-adic 𝐿-functions and cyclotomic fields, Nagoya Math. J. 56 (1975), 61–77. MR 0360536 (50 #12984)
  • Ralph Greenberg, On 𝑝-adic 𝐿-functions and cyclotomic fields. II, Nagoya Math. J. 67 (1977), 139–158. MR 0444614 (56 #2964)
  • Benedict H. Gross, 𝑝-adic 𝐿-series at 𝑠=0, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28 (1981), no. 3, 979–994 (1982). MR 656068 (84b:12022)
  • Benedict H. Gross, On the periods of abelian integrals and a formula of Chowla and Selberg, Invent. Math. 45 (1978), no. 2, 193–211. With an appendix by David E. Rohrlich. MR 0480542 (58 #701)
  • Kenkichi Iwasawa, On Γ-extensions of algebraic number fields, Bull. Amer. Math. Soc. 65 (1959), 183–226. MR 0124316 (23 #A1630), http://dx.doi.org/10.1090/S0002-9904-1959-10317-7
  • Kenkichi Iwasawa, On 𝑝-adic 𝐿-functions, Ann. of Math. (2) 89 (1969), 198–205. MR 0269627 (42 #4522)
  • Kenkichi Iwasawa, A class number formula for cyclotomic fields, Ann. of Math. (2) 76 (1962), 171–179. MR 0154862 (27 #4806)
  • [Kato ] K. Kato, Higher Local Class Field Theory, Proc. Japan Acad. 53 (1977) pp. 140-143 and 54 (1978) pp. 250-255.
  • [Ka-L ] N. Katz and S. Lang, Finiteness Theorems in Geometric Class Field Theory, to appear in l'Enseignement Mathematique, 1982.
  • [Ka-M ] N. Katz and B. Mazur, to appear.
  • Donald Kersey, Modular units inside cyclotomic units, Ann. of Math. (2) 112 (1980), no. 2, 361–380. MR 592295 (82h:12006), http://dx.doi.org/10.2307/1971150
  • [Ke 2 ] D. Kersey, The index of modular units, to appear.
  • [Kl ] F. Klein, Uber die elliptischen Normalkurven der n-ten Ordnung, Abh. math.-phys. Klasse Sächsischen Kgl. Gesellschaft Wiss. Bd 13, Nr. IV (1885) pp. 198-254.
  • [Ku 1 ] D. Kubert, The 2-primary component of the ideal class group in cyclotomic fields, to appear.
  • Daniel S. Kubert, The universal ordinary distribution, Bull. Soc. Math. France 107 (1979), no. 2, 179–202 (English, with French summary). MR 545171 (81b:12004)
  • Daniel S. Kubert, The 𝑍/2𝑍 cohomology of the universal ordinary distribution, Bull. Soc. Math. France 107 (1979), no. 2, 203–224 (English, with French summary). MR 545172 (81a:20062)
  • Daniel S. Kubert and Serge Lang, Modular units, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Science], vol. 244, Springer-Verlag, New York, 1981. MR 648603 (84h:12009)
  • Daniel S. Kubert and Serge Lang, Modular units inside cyclotomic units, Bull. Soc. Math. France 107 (1979), no. 2, 161–178 (English, with French summary). MR 545170 (81k:12006)
  • [Kum 1 ] E. Kummer, Mémoire sur la théorie des nombres complexes composées de racines de l'unité et de nombres entiers, J. Math. Pure et Appliquees, XVI (1851) pp. 377-498 (=Collected Works I, especially p. 452).
  • [Kum 2 ] E. Kummer, Theorie der idealen Primfaktoren der complexen Zahlen, welche aus den Wurzeln der Gleichung ω = 1 gebildet sind, wenn n eine zusammengesetzte Zahl ist, Math. Abh. Konig. Akad. Wiss. Berlin (1856) pp. 1-47, (Collected Works I, especially p. 583). Note: In CW I, p. 626, Kummer gives what is known as the Stickelberger congruence for Gauss sums in terms of factorials.
  • Serge Lang, Cyclotomic fields, Springer-Verlag, New York, 1978. Graduate Texts in Mathematics, Vol. 59. MR 0485768 (58 #5578)
  • Serge Lang, Elliptic functions, Addison-Wesley Publishing Co., Inc., Reading, Mass.-London-Amsterdam, 1973. With an appendix by J. Tate. MR 0409362 (53 #13117)
  • Serge Lang, Division points on curves, Ann. Mat. Pura Appl. (4) 70 (1965), 229–234. MR 0190146 (32 #7560)
  • Serge Lang, Unramified class field theory over function fields in several variables, Ann. of Math. (2) 64 (1956), 285–325. MR 0083174 (18,672b)
  • Serge Lang, Sur les séries 𝐿 d’une variété algébrique, Bull. Soc. Math. France 84 (1956), 385–407 (French). MR 0088777 (19,578c)
  • [L 6 ] S. Lang, L-series of a covering, Proc. Nat. Acad. Sci. USA (1956).
  • R. P. Langlands, Modular forms and ℓ-adic representations, Modular functions of one variable, II (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972), Springer, Berlin, 1973, pp. 361–500. Lecture Notes in Math., Vol. 349. MR 0354617 (50 #7095)
  • Heinrich-Wolfgang Leopoldt, Eine Verallgemeinerung der Bernoullischen Zahlen, Abh. Math. Sem. Univ. Hamburg 22 (1958), 131–140 (German). MR 0092812 (19,1161e)
  • H. W. Leopoldt, Über Einheitengruppe und Klassenzahl reeller abelscher Zahlkörper, Abh. Deutsch. Akad. Wiss. Berlin. Kl. Math. Nat. 1953 (1953), no. 2, 48 pp. (1954) (German). MR 0067927 (16,799d)
  • Heinrich-Wolfgang Leopoldt, Zur Arithmetik in abelschen Zahlkörpern, J. Reine Angew. Math. 209 (1962), 54–71. MR 0139602 (25 #3034)
  • B. Mazur, Modular curves and the Eisenstein ideal, Inst. Hautes Études Sci. Publ. Math. 47 (1977), 33–186 (1978). MR 488287 (80c:14015)
  • B. Mazur, Rational isogenies of prime degree (with an appendix by D. Goldfeld), Invent. Math. 44 (1978), no. 2, 129–162. MR 482230 (80h:14022), http://dx.doi.org/10.1007/BF01390348
  • Barry Mazur, Fermat’s last theorem, Selected Lectures in Mathematics, American Mathematical Society, Providence, RI, 1995. A lecture presented in Vancouver, British Columbia, August 1993. MR 1419093 (97h:11031)
  • R. James Milgram, Odd index subgroups of units in cyclotomic fields and applications, Algebraic 𝐾-theory, Evanston 1980 (Proc. Conf., Northwestern Univ., Evanston, Ill., 1980), Lecture Notes in Math., vol. 854, Springer, Berlin, 1981, pp. 269–298. MR 618309 (83c:12014)
  • [Mi 2 ] J. Milgram, Patching techniques in surgery and the solution of the compact space form problem, to appear.
  • John Tate and Frans Oort, Group schemes of prime order, Ann. Sci. École Norm. Sup. (4) 3 (1970), 1–21. MR 0265368 (42 #278)
  • [Pa ] A. M. Parshin, Class field theory for arithmetical schemes, preprint, and also Uspekhi Matem. Nauk 39 (1975) p. 253 and Izvestija Acad. Nauk. SSSR Ser. Matem. 40 (1976) pp. 736-773.
  • K. Ramachandra, Some applications of Kronecker’s limit formulas, Ann. of Math. (2) 80 (1964), 104–148. MR 0164950 (29 #2241)
  • Michel Raynaud, Schémas en groupes de type (𝑝,…,𝑝), Bull. Soc. Math. France 102 (1974), 241–280 (French). MR 0419467 (54 #7488)
  • Michel Raynaud, Faisceaux amples sur les schémas en groupes et les espaces homogènes, Lecture Notes in Mathematics, Vol. 119, Springer-Verlag, Berlin, 1970 (French). MR 0260758 (41 #5381)
  • Kenneth A. Ribet, A modular construction of unramified 𝑝-extensions of𝑄(𝜇_{𝑝}), Invent. Math. 34 (1976), no. 3, 151–162. MR 0419403 (54 #7424)
  • Gilles Robert, Unités elliptiques, Société Mathématique de France, Paris, 1973 (French). Bull. Soc. Math. France, Mém. No. 36; Bull. Soc. Math. France, Tome 101. MR 0469889 (57 #9669)
  • Gilles Robert, Nombres de Hurwitz et unités elliptiques, Ann. Sci. École Norm. Sup. (4) 11 (1978), no. 3, 297–389 (French). Un critère de régularité pour les extensions abéliennes d’un corps quadratique imaginaire. MR 521636 (80k:12010)
  • Jean-Pierre Serre, Propriétés galoisiennes des points d’ordre fini des courbes elliptiques, Invent. Math. 15 (1972), no. 4, 259–331 (French). MR 0387283 (52 #8126)
  • [Se 2 ] J. P. Serre, Classes des corps cyclotomiques d'après Iwasawa, Bourbaki Seminar 1958.
  • Goro Shimura, Introduction to the arithmetic theory of automorphic functions, Publications of the Mathematical Society of Japan, No. 11. Iwanami Shoten, Publishers, Tokyo, 1971. Kan\cflex o Memorial Lectures, No. 1. MR 0314766 (47 #3318)
  • Takuro Shintani, On a Kronecker limit formula for real quadratic fields, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 24 (1977), no. 1, 167–199. MR 0460283 (57 #277)
  • Takuro Shintani, On certain ray class invariants of real quadratic fields, J. Math. Soc. Japan 30 (1978), no. 1, 139–167. MR 0498490 (58 #16599)
  • Carl Ludwig Siegel, Lectures on advanced analytic number theory, Notes by S. Raghavan. Tata Institute of Fundamental Research Lectures on Mathematics, No. 23, Tata Institute of Fundamental Research, Bombay, 1965. MR 0262150 (41 #6760)
  • W. Sinnott, On the Stickelberger ideal and the circular units of a cyclotomic field, Ann. of Math. (2) 108 (1978), no. 1, 107–134. MR 0485778 (58 #5585)
  • W. Sinnott, On the Stickelberger ideal and the circular units of an abelian field, Invent. Math. 62 (1980/81), no. 2, 181–234. MR 595586 (82i:12004), http://dx.doi.org/10.1007/BF01389158
  • [St ] H. Stark, L-functions at s = 1: I: Advances in Math. 7 (1971) pp. 301-343, II: Ibid. 17 (1975) pp. 60-92, III: Ibid 22 (1976) pp. 64-84, IV: Ibid 35 (1980) pp. 197-235.
  • H. M. Stark, Class fields and modular forms of weight one, Modular functions of one variable, V (Proc. Second Internat. Conf., Univ. Bonn, Bonn, 1976), Springer, Berlin, 1977, pp. 277–287. Lecture Notes in Math., Vol. 601. MR 0450243 (56 #8539)
  • [Ta 1 ] J. Tate, On Stark's conjectures on the behavior of L (s, χ) at s = 0, to appear, Shintani Memorial Volume, J. Fac. Sci. Tokyo 1982.
  • John Tate, Les conjectures de Stark sur les fonctions 𝐿 d’Artin en 𝑠=0, Progress in Mathematics, vol. 47, Birkhäuser Boston Inc., Boston, MA, 1984 (French). Lecture notes edited by Dominique Bernardi and Norbert Schappacher. MR 782485 (86e:11112)
  • John T. Tate, Algebraic cycles and poles of zeta functions, Arithmetical Algebraic Geometry (Proc. Conf. Purdue Univ., 1963) Harper & Row, New York, 1965, pp. 93–110. MR 0225778 (37 #1371)
  • [Ta 4 ] J. Tate, The conjecture of Birch and Swinnerton-Dyer and a geometric analogue, Dix exposés sur la cohomologie des schémas, North Holland, 1968 (=Seminaire Bourbaki 352, 1966).
  • John T. Tate, The arithmetic of elliptic curves, Invent. Math. 23 (1974), 179–206. MR 0419359 (54 #7380)
  • [Va 1 ] H. S. Vandiver, Fermat's last theorem and the second factor in the cyclotomic class number, Bull. AMS 40 (1934) pp. 118-126.
  • H. S. Vandiver, Fermat’s last theorem. Its history and the nature of the known results concerning it, Amer. Math. Monthly 53 (1946), 555–578. MR 0018660 (8,313e)
  • C. T. C. Wall, Classification of Hermitian Forms. VI. Group rings, Ann. of Math. (2) 103 (1976), no. 1, 1–80. MR 0432737 (55 #5720)
  • Lawrence C. Washington, The non-𝑝-part of the class number in a cyclotomic 𝑍_{𝑝}-extension, Invent. Math. 49 (1978), no. 1, 87–97. MR 511097 (80c:12005), http://dx.doi.org/10.1007/BF01399512
  • Andrew Wiles, Modular curves and the class group of 𝑄(𝜁_{𝑝}), Invent. Math. 58 (1980), no. 1, 1–35. MR 570872 (82j:12009), http://dx.doi.org/10.1007/BF01402272
  • Kōichi Yamamoto, The gap group of multiplicative relationships of Gaussian sums, Symposia Mathematica, Vol. XV (Convegno di Strutture in Corpi Algebrici, INDAM, Rome, 1973), Academic Press, London, 1975, pp. 427–440. MR 0382188 (52 #3076)
  • Koichi Yamamoto, On a conjecture of Hasse concerning multiplicative relations of Gaussian sums, J. Combinatorial Theory 1 (1966), 476–489. MR 0213311 (35 #4175)
  • Jing Yu, A cuspidal class number formula for the modular curves 𝑋₁(𝑁), Math. Ann. 252 (1980), no. 3, 197–216. MR 593633 (82b:10030), http://dx.doi.org/10.1007/BF01420083
  • Horst G. Zimmer, Computational problems, methods, and results in algebraic number theory, Lecture Notes in Mathematics, Vol. 262, Springer-Verlag, Berlin, 1972. MR 0323751 (48 #2107)

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1980): 12A35, 12A90, 12G25, 10D12

Retrieve articles in all journals with MSC (1980): 12A35, 12A90, 12G25, 10D12


Additional Information

DOI: http://dx.doi.org/10.1090/S0273-0979-1982-14997-7
PII: S 0273-0979(1982)14997-7