Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Units and class groups in number theory and algebraic geometry


Author: Serge Lang
Journal: Bull. Amer. Math. Soc. 6 (1982), 253-316
MSC (1980): Primary 12A35, 12A90; Secondary 12G25, 10D12
DOI: https://doi.org/10.1090/S0273-0979-1982-14997-7
MathSciNet review: 648522
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • Greg W. Anderson, Logarithmic derivatives of Dirichlet 𝐿-functions and the periods of abelian varieties, Compositio Math. 45 (1982), no. 3, 315–332. MR 656608
  • [An 2 ] G. Anderson, to appear.
  • A. A. Beĭlinson, Higher regulators and values of 𝐿-functions of curves, Funktsional. Anal. i Prilozhen. 14 (1980), no. 2, 46–47 (Russian). MR 575206
  • [Be ] R. Bergelson, The index of the Stickelberger ideal of order k on C(N), to appear Annals of Math.
  • [Bl ] S. Bloch, Algebraic K-theory and class field theory for arithmetic surfaces, to appear.
  • Fedor Alekseivich Bogomolov, Sur l’algébricité des représentations 𝑙-adiques, C. R. Acad. Sci. Paris Sér. A-B 290 (1980), no. 15, A701–A703 (French, with English summary). MR 574307
  • Pierrette Cassou-Noguès, Valeurs aux entiers négatifs des fonctions zêta et fonctions zêta 𝑝-adiques, Invent. Math. 51 (1979), no. 1, 29–59 (French). MR 524276, https://doi.org/10.1007/BF01389911
  • [Co 1 ] J. Coates, p-adic L-functions and Iwasawa's theory, Durham Conference on algebraic number theory and class field theory, 1976.
  • [Co 2 ] J. Coates, Fonctions zeta partielles d'un corps de nombres totalement réel, Seminaire Delange-Pisot-Poitou, 1974-1975.
  • [Co-L ] J. Coates and S. Lichtenbaum, On l-adic zeta functions, Ann. of Math. 98 (1973) pp. 498-550. MR 330107
  • [Co-Si 1 ] J. Coates and W. Sinnott, On p-adic L-functions over real quadratic fields, Invent. Math 25 (1974) pp. 253-279. MR 354615
  • [Co-Si 2 ] J. Coates and W. Sinnott, Integrality properties of the values of partial zeta functions, Proc. London Math. Soc. (1977) pp. 365-384. MR 439815
  • [Co-Wi 1 ] J. Coates and A. Wiles, On the conjecture of Birch and Swinnerton-Dyer, Invent. Math. 39 (1977) pp. 223-251. MR 463176
  • [Co-Wi 2 ] J. Coates and A. Wiles, Kummer's criterion for Hurwitz numbers, Kyoto Conference on Algebraic Number Theory, 1977.
  • J. Coates and A. Wiles, On 𝑝-adic 𝐿-functions and elliptic units, J. Austral. Math. Soc. Ser. A 26 (1978), no. 1, 1–25. MR 510581
  • [Da-H ] H. Davenport and H. Heilbronn, On the density of discriminants of cubic fields II, Proc. Royal Soc. 322 (1971) pp. 405-420. MR 491593
  • P. Deligne, Valeurs de fonctions 𝐿 et périodes d’intégrales, Automorphic forms, representations and 𝐿-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 313–346 (French). With an appendix by N. Koblitz and A. Ogus. MR 546622
  • [De-Ra ] P. Deligne and M. Rapoport, Schémas de modules des courbes élliptiques, Springer Lecture Notes 349 (1973). MR 337993
  • [Dr ] V. G. Drinfeld, Two theorems on modular curves, Functional analysis and its applications, Vol. 7 No. 2 translated from the Russian April-June 1973 pp. 155-156. MR 318157
  • Bruce Ferrero and Lawrence C. Washington, The Iwasawa invariant 𝜇_{𝑝} vanishes for abelian number fields, Ann. of Math. (2) 109 (1979), no. 2, 377–395. MR 528968, https://doi.org/10.2307/1971116
  • [Gra ] G. Gras, Classes d'idéaux des corps abéliens et nombres de Bernoulli généralisés, Annales Institut Fourier Université de Grenoble, Tome XXVII, Fasc. 1 (1977) pp. 1-66. MR 450238
  • [Gre 1 ] R. Greenberg, On p-adic L-functions and cyclotomic fields I, Nagoya Math. J. No. 56 (1974) pp. 61-77. MR 360536
  • [Gre 2 ] R. Greenberg, On p-adic L-functions and cyclotomic fields II, Nagoya Math. J. No. 67 (1977) pp. 139-158. MR 444614
  • Benedict H. Gross, 𝑝-adic 𝐿-series at 𝑠=0, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28 (1981), no. 3, 979–994 (1982). MR 656068
  • [Gro 2 ] B. Gross, On the periods of Abelian integrals and a formula of Chowla and Selberg, Invent. Math. 45 (1978) pp. 193-211. MR 480542
  • [Iw 1 ] K. Iwasawa, On Γ-extensions of algebraic number fields, Bull. AMS 65 (1959) pp. 183-192. MR 124316
  • [Iw 2 ] K. Iwasawa, On p-adic L- functions, Ann. of Math. 89 (1969) pp. 198-205. MR 269627
  • [Iw 3 ] K. Iwasawa, A class number formula for cyclotomic fields, Ann. of Math. 76 (1962) pp. 171-179. MR 154862
  • [Kato ] K. Kato, Higher Local Class Field Theory, Proc. Japan Acad. 53 (1977) pp. 140-143 and 54 (1978) pp. 250-255.
  • [Ka-L ] N. Katz and S. Lang, Finiteness Theorems in Geometric Class Field Theory, to appear in l'Enseignement Mathematique, 1982.
  • [Ka-M ] N. Katz and B. Mazur, to appear.
  • Donald Kersey, Modular units inside cyclotomic units, Ann. of Math. (2) 112 (1980), no. 2, 361–380. MR 592295, https://doi.org/10.2307/1971150
  • [Ke 2 ] D. Kersey, The index of modular units, to appear.
  • [Kl ] F. Klein, Uber die elliptischen Normalkurven der n-ten Ordnung, Abh. math.-phys. Klasse Sächsischen Kgl. Gesellschaft Wiss. Bd 13, Nr. IV (1885) pp. 198-254.
  • [Ku 1 ] D. Kubert, The 2-primary component of the ideal class group in cyclotomic fields, to appear.
  • Daniel S. Kubert, The universal ordinary distribution, Bull. Soc. Math. France 107 (1979), no. 2, 179–202 (English, with French summary). MR 545171
  • Daniel S. Kubert, The 𝑍/2𝑍 cohomology of the universal ordinary distribution, Bull. Soc. Math. France 107 (1979), no. 2, 203–224 (English, with French summary). MR 545172
  • Daniel S. Kubert and Serge Lang, Modular units, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Science], vol. 244, Springer-Verlag, New York-Berlin, 1981. MR 648603
  • Daniel S. Kubert and Serge Lang, Modular units inside cyclotomic units, Bull. Soc. Math. France 107 (1979), no. 2, 161–178 (English, with French summary). MR 545170
  • [Kum 1 ] E. Kummer, Mémoire sur la théorie des nombres complexes composées de racines de l'unité et de nombres entiers, J. Math. Pure et Appliquees, XVI (1851) pp. 377-498 (=Collected Works I, especially p. 452).
  • [Kum 2 ] E. Kummer, Theorie der idealen Primfaktoren der complexen Zahlen, welche aus den Wurzeln der Gleichung ω = 1 gebildet sind, wenn n eine zusammengesetzte Zahl ist, Math. Abh. Konig. Akad. Wiss. Berlin (1856) pp. 1-47, (Collected Works I, especially p. 583). Note: In CW I, p. 626, Kummer gives what is known as the Stickelberger congruence for Gauss sums in terms of factorials.
  • [L 1 ] S. Lang, Cyclotomic Fields Vols. 1 and 2, Springer Verlag 1979 and 1980. MR 485768
  • [L 2 ] S. Lang, Elliptic functions, Addison Wesley, 1974. MR 409362
  • [L 3 ] S. Lang, Division points on curves, Ann. Mat. Pura Appl. IV, Tomo LXX (1965) pp. 229-234. MR 190146
  • [L 4 ] S. Lang, Unramified class field theory over function fields in several variables, Ann. of Math. 64 (1956) pp. 286-325. MR 83174
  • [L 5 ] S. Lang, Sur les séries L d'une variété algébrique, Bull. Soc. Math. France 84 (1956) pp. 385-407. MR 88777
  • [L 6 ] S. Lang, L-series of a covering, Proc. Nat. Acad. Sci. USA (1956).
  • [Lgds ] R. Langlands, Modular forms and l-adic representations, Springer Lecture Notes 349 (1973) pp. 361-500. MR 354617
  • [Le 1 ] H. W. Leopoldt, Eine Verallgemeinerung der Bernoullische Zahlen, Abh. Math. Sem. Hamburg (1958) pp. 131-140. MR 92812
  • [Le 2 ] H. W. Leopoldt, Uber Einheitengruppe und Klassenzahl reeler abelscher Zahlkörper, Abh. Deutsche Akad. Wiss. Berlin Math. 2 (1954) Akademie Verlag. MR 67927
  • [Le 3 ] H. W. Leopoldt, Uber die Arithmetik algebraischen Zahlkörper, J. reine angew. Math 209 (1962) pp. 54-71. MR 139602
  • B. Mazur, Modular curves and the Eisenstein ideal, Inst. Hautes Études Sci. Publ. Math. 47 (1977), 33–186 (1978). MR 488287
  • B. Mazur, Rational isogenies of prime degree (with an appendix by D. Goldfeld), Invent. Math. 44 (1978), no. 2, 129–162. MR 482230, https://doi.org/10.1007/BF01390348
  • Barry Mazur, Fermat’s last theorem, Selected Lectures in Mathematics, American Mathematical Society, Providence, RI, 1995. A lecture presented in Vancouver, British Columbia, August 1993. MR 1419093
  • R. James Milgram, Odd index subgroups of units in cyclotomic fields and applications, Algebraic 𝐾-theory, Evanston 1980 (Proc. Conf., Northwestern Univ., Evanston, Ill., 1980) Lecture Notes in Math., vol. 854, Springer, Berlin-New York, 1981, pp. 269–298. MR 618309
  • [Mi 2 ] J. Milgram, Patching techniques in surgery and the solution of the compact space form problem, to appear.
  • [O-T ] F. Oort and J. Tate, Group schemes of prime order, Ann. Scient. Ec. Norm. Sup. serie 4, 3 (1970) pp. 1-21. MR 265368
  • [Pa ] A. M. Parshin, Class field theory for arithmetical schemes, preprint, and also Uspekhi Matem. Nauk 39 (1975) p. 253 and Izvestija Acad. Nauk. SSSR Ser. Matem. 40 (1976) pp. 736-773.
  • [Ra ] K. Ramachandra, Some applications of Kronecker's limit formula, Ann. of Math. 80 (1964) pp. 104-148. MR 164950
  • [Ray 1 ] M. Raynaud, Schémas en groupes de type (p,..., p), Bull. Soc. Math. France 102 (1974) pp. 241-280. MR 419467
  • [Ray 2 ] M. Raynaud, Faisceaux amples sur les schémas en groupes et les éspaces homogènes, Springer Lecture Notes 119 (1970). MR 260758
  • [Ri ] K. Ribet, A modular construction of unramified p-extensions of Q(μ), Invent. Math. 34 (1976) pp. 151-162. MR 419403
  • [Ro 1 ] G. Robert, Unités élliptiques, Bull. Soc. Math. France Supplément, Décembre 1973 No. 36. MR 469889
  • Gilles Robert, Nombres de Hurwitz et unités elliptiques, Ann. Sci. École Norm. Sup. (4) 11 (1978), no. 3, 297–389 (French). Un critère de régularité pour les extensions abéliennes d’un corps quadratique imaginaire. MR 521636
  • [Se 1 ] J. P. Serre, Propriétés Galoisiènnes des points d'ordre fini des courbes élliptiques, Invent. Math. 15 (1972) pp. 259-331. MR 387283
  • [Se 2 ] J. P. Serre, Classes des corps cyclotomiques d'après Iwasawa, Bourbaki Seminar 1958.
  • [Shim ] G. Shimura, Introduction to the arithmetic theory of automorphic functions, Iwanami Shoten and Princeton University Press 1971. MR 314766
  • [Shin 1 ] T. Shintani, On a Kronecker limit formula for real quadratic fields, J. Fac. Sci. Univ. Tokyo Sec. IA, 24 (1977) pp. 167-199. MR 460283
  • [Shin 2 ] T. Shintani, On certain ray class invariants of real quadratic fields, J. Math. Soc. Japan Vol. 30 No 1 (1978) pp. 139-167. MR 498490
  • [Sie ] C.L. Siegel, Lectures on advanced analytic number theory, Tata Institute Lecture Notes 1961. MR 262150
  • [Sin 1 ] W. Sinnott, On the Stickelberger ideal and the circular units of a cyclotomic field, Ann. of Math. 108 (1978) pp. 107-134. MR 485778
  • W. Sinnott, On the Stickelberger ideal and the circular units of an abelian field, Invent. Math. 62 (1980/81), no. 2, 181–234. MR 595586, https://doi.org/10.1007/BF01389158
  • [St ] H. Stark, L-functions at s = 1: I: Advances in Math. 7 (1971) pp. 301-343, II: Ibid. 17 (1975) pp. 60-92, III: Ibid 22 (1976) pp. 64-84, IV: Ibid 35 (1980) pp. 197-235.
  • [St B ] H. Stark, Class fields and modular forms of weight 1, Springer Lecture Notes 601, 1976; (Bonn conference on modular forms in one variable). MR 450243
  • [Ta 1 ] J. Tate, On Stark's conjectures on the behavior of L (s, χ) at s = 0, to appear, Shintani Memorial Volume, J. Fac. Sci. Tokyo 1982.
  • John Tate, Les conjectures de Stark sur les fonctions 𝐿 d’Artin en 𝑠=0, Progress in Mathematics, vol. 47, Birkhäuser Boston, Inc., Boston, MA, 1984 (French). Lecture notes edited by Dominique Bernardi and Norbert Schappacher. MR 782485
  • [Ta 3 ] J. Tate, Algebraic cycles and poles of zeta functions, in Arithmetical Algebraic Geometry, Conference held at Purdue University, 1963, Harper and Row, New York 1965. MR 225778
  • [Ta 4 ] J. Tate, The conjecture of Birch and Swinnerton-Dyer and a geometric analogue, Dix exposés sur la cohomologie des schémas, North Holland, 1968 (=Seminaire Bourbaki 352, 1966).
  • [Ta 5 ] J. Tate, Arithmetic of Elliptic Curves, Invent. Math. 23 (1974) pp. 179-206. MR 419359
  • [Va 1 ] H. S. Vandiver, Fermat's last theorem and the second factor in the cyclotomic class number, Bull. AMS 40 (1934) pp. 118-126.
  • [Va 2 ] H. S. Vandiver, Fermat's last theorem, Am. Math. Monthly 53 (1946) pp. 555-576. MR 18660
  • [Wall ] C. T. C. Wall, Classification of hermitian forms VI, Ann. of Math. 103 (1976) pp. 1-80. MR 432737
  • Lawrence C. Washington, The non-𝑝-part of the class number in a cyclotomic 𝑍_{𝑝}-extension, Invent. Math. 49 (1978), no. 1, 87–97. MR 511097, https://doi.org/10.1007/BF01399512
  • Andrew Wiles, Modular curves and the class group of 𝑄(𝜁_{𝑝}), Invent. Math. 58 (1980), no. 1, 1–35. MR 570872, https://doi.org/10.1007/BF01402272
  • [Ya 1 ] K. Yamamoto, The Gap group of multiplicative relationships of Gaussian sums, Symposia Mathematica No. 15 (1975) pp. 427-440. MR 382188
  • [Ya 2 ] K. Yamamoto, On a conjecture of Hasse concerning multiplicative relations, of Gaussian sums, J. Combin. Theory 1 (1966) pp. 476-489. MR 213311
  • Jing Yu, A cuspidal class number formula for the modular curves 𝑋₁(𝑁), Math. Ann. 252 (1980), no. 3, 197–216. MR 593633, https://doi.org/10.1007/BF01420083
  • [Zi] H. Zimmer, Lecture Notes in Math., vol. 262, Springer-Verlag, New York, 1972. MR 323751

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1980): 12A35, 12A90, 12G25, 10D12

Retrieve articles in all journals with MSC (1980): 12A35, 12A90, 12G25, 10D12


Additional Information

DOI: https://doi.org/10.1090/S0273-0979-1982-14997-7

American Mathematical Society