Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Three dimensional manifolds, Kleinian groups and hyperbolic geometry


Author: William P. Thurston
Journal: Bull. Amer. Math. Soc. 6 (1982), 357-381
MSC (1980): Primary 57M99, 30F40, 57S30; Secondary 57M25, 20H15
DOI: https://doi.org/10.1090/S0273-0979-1982-15003-0
MathSciNet review: 648524
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [Bers] L. Bers, Finite dimensional Teichmüller spaces and generalizations, Bull. Amer. Math. Soc. (N.S.) 5 (1981), 131-172. MR 621883
  • [Can, Th] J. Cannon and W. Thurston, Sphere-filling curves and limit sets of Kleinian groups (to appear).
  • [C, J, S] M. Culler, W. Jaco and H. Rubinstein, Incompressible surfaces in once-punctured torus bundles (to appear). MR 675414
  • [F, H] W. Floyd and A. Hatcher, Incompressible surfaces in 2-bridge link complements (to appear).
  • [F, L, P] A. Fathi, F. Laudenbach, V. Poénaru et al., Travaus de Thurston sur les surfaces, Astérisque 66-67, Société Mathématique de France, 1979.
  • [Hak] W. Haken, Theorie der Normal Flachen, Acta Math. 105 (1961), 5. MR 141106
  • [Hat] A. Hatcher, Incompressible surfaces in once-punctured torus bundles (to appear).
  • [H, T] A. Hatcher and W. Thurston, Incompressible surfaces in 2-bridge knot complements, Invent. Math, (to appear). MR 778125
  • [Ja, Sh] W. H. Jaco and P. B. Shalen, Seifert fibered spaces in 3-manifolds, Mem. Amer. Math. Soc. No. 2(1979). MR 539411
  • [Joh] K. Johannson, Homotopy equivalence of 3-manifolds with boundaries, Lecture Notes in Math., no. 7761, Springer-Verlag, Berlin, Heidelberg, New York, 1979. MR 551744
  • [M, Y] W. Meeks and S-T Yau, Topology of three dimensional manifolds and the embedding problems in minimal surface theory, Ann. of Math. 112 (1980), 441-484. MR 595203
  • [Mey] R. Meyerhoff, The Chern-Simons invariant for hyperbolic 3-manifolds, thesis, Princeton University, 1981.
  • [Mil 1] J. Milnor, A unique factorization theorem for 3-manifolds, Amer. J. Math. 84 (1962), 1-7. MR 142125
  • [Mil 2] J. Milnor, Hyperbolic geometry: the first 150 years, proceedings.
  • [Mos 1] G. D. Mostow, Strong rigidity of locally symmetric spaces, Ann. Math. Studies, No. 78, Princeton Univ. Press, Princeton, N.J., 1973. MR 385004
  • [Mos 2] G. D. Mostow, Inst. Hautes Études Sci. Publ. Math.
  • [Poin] H. Poincaré, Cinquième complèment a l'analysis situs, Rend. Circ. Mat. Palermo 18 (1904), 45-110, or Oeuvres, t. VI, pp. 435-498.
  • [Pras] G. Prasad, Strong rigidity of Q-rank 1 lattices, Invent. Math., 5-6. MR 385005
  • [Ril] R. Riley, Discrete parabolic representations of link groups, Mathematika 22 (1975), 141-150. MR 425946
  • [Seif] H. Seifert, Topologie drei dimensionales gefasertei Raume, Acta Math. 60 (1933), 147-288. MR 1555366
  • [Smi] Proceedings of the Smith Conjecture Conference at Columbia University, (to appear).
  • [Sta] J. Stallings, On fibering certain-3-manifolds, Prentice-Hall, Engelwood Cliffs, N.J., 1962, pp. 95-100. MR 158375
  • [Sul 1] D. Sullivan, Discrete conformal groups and measurable dynamics, these proceedings.
  • [Sul 2] D. Sullivan,
  • [Th 1] W. Thurston, The geometry and topology of 3-manifolds, preprint, Princeton Univ. Press (to appear).
  • [Th 2] W. Thurston, Hyperbolic structures on 3-manifolds, I: deformations of acylindrical manifolds, preprint. MR 855294
  • [Th 3] W. Thurston, Hyperbolic structures on 3-manifolds, II: surface groups and 3-manifolds which fiber over the circle.
  • [Th 4] W. Thurston, On the geometry and dynamics of diffeomorphisms of surfaces, I, preprint. MR 956596
  • [Wal] F. Waldhausen, On irreducible 3-manifolds which are sufficiently large, Ann. of Math. (2) 87 (1968), 56-88. MR 224099

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1980): 57M99, 30F40, 57S30, 57M25, 20H15

Retrieve articles in all journals with MSC (1980): 57M99, 30F40, 57S30, 57M25, 20H15


Additional Information

DOI: https://doi.org/10.1090/S0273-0979-1982-15003-0

American Mathematical Society