ORTHOGONAL TRANSFORMATIONS FOR WHICH
TOPOLOGICAL EQUIVALENCE IMPLIES
LINEAR EQUIVALENCE

BY W.-C. HSIANG1 AND WILLIAM PARDON2

Let $R_1, R_2 \in O(n)$, the group of orthogonal transformations of \mathbb{R}^n. We say R_1 and R_2 are topologically (resp. linearly) equivalent if there is a homeomorphism (resp. linear automorphism) $f: \mathbb{R}^n \to \mathbb{R}^n$ such that

\begin{align}
(1) \quad f^{-1}R_1f = R_2: \mathbb{R}^n \to \mathbb{R}^n, \quad f(0) = 0.
\end{align}

(Of course, linear equivalence of R_1 with R_2 is the same as equality of the respective sets of complex eigenvalues.) The order of an orthogonal transformation is its order as an element of $O(n)$. The purpose of this note is to announce and discuss the proof of the following result [HP].

Theorem A. Let $R_1, R_2 \in O(n)$ have order $k = l2^m$, where l is odd and $m > 0$. Suppose that

(a) R_1 and R_2 are topologically equivalent, and

(b) each eigenvalue of R_1 and R_2 is either 1 or a primitive 2^mth root of unity. Then R_1 and R_2 are linearly equivalent.

If G is a group and $\rho_1, \rho_2: G \to O(n)$ are orthogonal representations, we say ρ_1 and ρ_2 are topologically (resp. linearly) equivalent if there is a homeomorphism (resp. linear automorphism) $f: \mathbb{R}^n \to \mathbb{R}^n, f(0) = 0$, such that

\begin{align}
(2) \quad f\rho_1(g)(x) = \rho_2(g)f(x),
\end{align}

for all $x \in \mathbb{R}^n, g \in G$. Here is an equivalent statement of Theorem A giving a more geometric description of its condition (b).

Theorem B. Let $\rho_1, \rho_2: G \to O(n)$ be orthogonal representations of the finite group G such that $\rho_1|H$ and $\rho_2|H$ define semi-free actions of H on \mathbb{R}^n for each cyclic 2-subgroup H of G. If ρ_1 and ρ_2 are topologically equivalent, then they are linearly equivalent.

Returning to Theorem A, note that if k is odd, condition (b) may be omitted; in this case the result has been proved independently, using rather different methods, by Madsen and Rothenberg [MR]. If k is an odd prime power,
Theorem A had been proved in [Sc] and, if \(k \leq 6 \), in [KR] where the more general question of linear versus topological equivalence of arbitrary linear endomorphisms of \(\mathbb{R}^n \) was studied. (In fact, the general question was reduced to the special case of orthogonal transformations of finite order in [KR].)

Unless \(k = 4 \), our result is the best possible, in the following sense. The remarkable results of [CS1] include for each \(k = \ell 2^m \), where \(m \geq 2 \), examples of topologically equivalent orthogonal transformations \(R_1 \) and \(R_2 \) of order \(k \), where \(R_1^j \) and \(R_2^j \) each have eigenvalues of any prescribed order \(2^j \), \(0 \leq j \leq m \), with at least one where \(1 < j < m \), and where \(R_1 \) and \(R_2 \) are not linearly equivalent.

Roughly stated, the proof of Theorem A has two parts. First, the theory of Anderson and Hsiang [AH1–3], which describes the obstructions to making \(f \) piecewise-linear (p.l.), is applied with the consequence that in (1) above, \(R_1 \) and \(R_2 \) may be assumed to have no eigenvalues equal to 1 and \(f \) may be assumed p.l. on \(\mathbb{R}^n - \{0\} \). Now add a point at infinity to the range of \(f \), discard the origin (getting \(\mathbb{R}^n \) again), and take the union of this with the domain of \(f \), identifying corresponding points under \(f|\mathbb{R}^n - \{0\} \). The result is p.l. homeomorphic to the \(n \)-sphere \(S^n \), and \(R_1 \) and \(R_2 \) conspire to define a periodic p.l. map \(R: S^n \to S^n \) of period \(k \).

If \(G \) denotes the cyclic group of order \(k \), then we have constructed a p.l. \(G \)-action \(G \times S^n \to S^n \) with exactly two points \(x_1, x_2 \) fixed by \(G \), near which \(G \) is actually acting smoothly, with its generator \(R \) inducing \(R_i \) on the tangent space to \(x_i \). Now if \(G \) were acting everywhere smoothly on \(S^n \), then the Atiyah-Singer \(G \)-signature formula (ASGSF) might be used to show the eigenvalues of \(R_1 \) and \(R_2 \) were the same: this general line of argument seems first to have been used by Atiyah, Bott and Milnor [AB, 7.15, 7.27].

On the other hand, the topological equivalence of linearly inequivalent \(R_i \in O(9) \) constructed in [CS2] was likewise p.l. on \(\mathbb{R}^9 - \{0\} \). The essential difference is that in this case the ASGSF gives no information about the eigenvalues at isolated fixed points because of the presence of \((-1)\)-eigenvalues (the Euler class of the \((-1)\)-eigenbundle must vanish in [AS, 6.12]). Moreover, condition (b) in Theorem A avoids \((-1)\)-eigenvalues on all powers of the \(R_i \), unless that power has order \(2\ell \), \(\ell \) odd.

Thus, in the presence of a p.l. ASGSF, we can make the argument of [AB, 7.27] work to give Theorem A. To get such a result, we first define a bordism theory of p.l. \(G \)-actions on closed p.l. manifolds, requiring (in place of the slice and tube theorems in the differentiable case) that \(G \) preserve p.l. block bundles around orbit types. The resultant bordism groups are "computable" in a way similar to that exposed in [CF] (again the smooth analogue). Given such a p.l. \(G \)-action \(G \times M \to M \), one defines the \(G \)-signature representation as in [AS, §6].
We then show by bordism computations that the trace of this representation on a generator g of G depends only on the fixed point set of g and its equivariant normal (block) bundle, and that this dependency is sufficient to detect the eigenvalues at the fixed points for the p.l. G-action on S^n constructed above.

REFERENCES

[HP] W.-C. Hsiang and W. Pardon, When are topologically equivalent orthogonal representations linearly equivalent? (preprint).

DEPARTMENT OF MATHEMATICS, PRINCETON UNIVERSITY, PRINCETON, NEW JERSEY 08540 (Current address of W.-C. Hsiang)

DEPARTMENT OF MATHEMATICS, DUKE UNIVERSITY, DURHAM, NORTH CAROLINA 27706