Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.


Full text of review: PDF   This review is available free of charge.
Book Information:

Author: Ivan Singer
Title: Bases in Banach spaces.
Additional book information: Springer-Verlag, Berlin and New York, 1981, viii + 880 pp., $78.00.

References [Enhancements On Off] (What's this?)

  • 1. M. G. Arsove and R. E. Edwards, Generalized bases in topological linear spaces, StudiaMath. 19 (1960), 95-113. MR 115068
  • 2. S. Banach, Théorie des opérations linéaires, Monogrofje Matematyczne, Warszawa, 1932.
  • 3. C. Bessaga and A. Pełczyński, On bases and unconditional convergence of series in Banach spaces, Studia Math. 17 (1958), 151-164. MR 115069
  • 4. C. Bessaga and A. Pełczyński, A generalization of results of R. C. James concerning absolute bases in Banach spaces, Studia Math. 17 (1958), 165-174. MR 115071
  • 5. A. M. Davie, The approximation problem for Banach spaces, Bull. London Math. Soc. 5 (1973), 261-266. MR 338735
  • 6. W. J. Davis, D. W. Dean and Bor-Luh Lin, Bibasic sequences and norming basic sequences, Trans. Amer. Math. Soc. 176 (1973), 89-102. MR 313763
  • 7. W. J. Davis and W. B. Johnson, On the existence of fundamental and total bounded biorthogonal systems in Banach spaces, Studia Math. 45 (1973), 173-179. MR 331021
  • 8. D. W. Dean, Schauder decompositions in (m), Proc. Amer. Math. Soc. 18 (1967), 619-623. MR 217575
  • 9. R. E. Edwards, Integral bases in inductive limit spaces, Pacific J. Math. 10 (1960), 797-812. MR 115065
  • 10. P. Enflo, A counterexample to the approximation problem, Acta Math. 13(1973), 309-317. MR 402468
  • 11. T. Figiel, Further counterexamples to the approximation problem, Dittoed notes.
  • 12. T. Figiel and W. B. Johnson, The approximation property does not imply the bounded approximation property, Proc. Amer. Math. Soc. 41 (1973), 197-200. MR 341032
  • 13. O. Frink, Jr., Series expansions in linear spaces, Amer. J. Math. 63 (1941), 87-100. MR 3452
  • 14. B. R. Gelbaum, Expansions in Banach spaces, Duke Math. J. 17 (1950), 187-196. MR 35396
  • 15. M. M. Grunblium, On the representation of a space of type B as a direct sum of subspaces, Dokl. Akad. Nauk SSSR 70 (1950), 749-752. (Russian) MR 33977
  • 16. D. F. Hale, Integral bases in Banach spaces, Dissertation, Ohio State Univ., 1969.
  • 17. W. B. Johnson, Finite-dimensional Schauder decompositions in IIλ and dual IIλ spaces, Illinois J. Math. 14 (1970), 642-647. MR 265917
  • 18. W. B. Johnson, Markuschevich bases and duality theory, Trans. Amer. Math. Soc. 149 (1970), 171-177. MR 261312
  • 19. W. B. Johnson and H. P. Rosenthal, On w*-basic sequences and their applications to the study of Banach spaces, Studia Math. 43 (1972), 77-92. MR 310598
  • 20. M. I. Kadec, Bi-orthogonal systems and summation bases, Funkcional'nyĭ Analiz i ego Primenenie, Izdat. Akad. Nauk Azerbaĭdžan SSR Baku 1961, pp. 106-108. (Russian) MR 145327
  • 21. M. I. Kadec and A. Pełczyński, Basic sequences, biorthogonal systems and norming sets in Banach and Fréchet spaces, Studia Math. 25 (1965), 297-323. (Russian) MR 181886
  • 22. V. Ya. Kozlov, On a generalization of the notion of basis, Dokl. Akad. Nauk SSSR 73 (1950), 643-646. (Russian) MR 36446
  • 23. J. Lindenstrauss, Extension of compact operators, Mem. Amer. Math. Soc. 48 (1964), 1-112. MR 179580
  • 24. J. Lindenstrauss, On James's paper "Separable conjugate spaces ", Israel J. Math. 9 (1971), 279-284. MR 279567
  • 25. J. Lindenstrauss and L. Tzafriri, Classical Banach spaces. I: Sequence spaces, Springer-Verlag, Berlin-Heidelberg-New York, 1977. MR 500056
  • 26. I. Maddaus, On completely continuous linear transformations, Bull. Amer. Math. Soc. 44 (1938), 279-282.
  • 27. A. Markouchevitch, Sur les bases (au sens large) dans les espaces linéaires, Dokl. Akad. Nauk SSSR 41 (1943), 227-229. MR 10778
  • 28. R. I. Ovsepian and A. Pełczyński, The existence in every Banach space of a fundamental total and bounded biorthogonal sequence and related constructions of uniformly bounded orthonormal systems in L, Studia Math. 54 (1975), 149-159. MR 394137
  • 29. A. Pełczyński and T. Figiel, On Enflo's method of construction of Banach spaces without the approximation property, Uspehi Mat. Nauk 28 (1973) no. 6(174), 95-108. (Russian) MR 450941
  • 30. A. Pełczyński and I. Singer, On non-equivalent bases and conditional bases in Banach spaces, Studia Math. 25 (1964), 5-25. MR 179583
  • 31. J. R. Retherford, Some remarks on Schauder bases of subspaces, Rev. Roumaine Math. Pures Appl. 11 (1966), 787-792. MR 205034
  • 32. W. H. Ruckle, The infinite sum of closed subspaces of an F-space, Duke Math. J. 31 (1964), 543-554. MR 166589
  • 33. W. H. Ruckle, Representation and series summability of complete biorthogonal sequences, Pacific J. Math. 34 (1970), 511-528. MR 267317
  • 34. W. H. Ruckle, On the classification of biorthogonal sequences, Canad. J. Math. 26 (1974), 721-733. MR 346494
  • 35. B. L. Sanders, On the existence of Schauder decompositions in Banach spaces, Proc. Amer. Math. Soc. 16 (1965), 987-990. MR 180835
  • 36. I. Singer, On biorthogonal systems and total sequences of functionals, Math. Ann. 193 (1971), 183-188. MR 350387
  • 37. B. S. Tsirel'son, Not every Banach space contains an imbedding of l, Functional Anal. Appl. 8 (1974), 138-141.

Review Information:

Reviewer: Charles W. McArthur
Journal: Bull. Amer. Math. Soc. 6 (1982), 478-486
DOI: https://doi.org/10.1090/S0273-0979-1982-15023-6
American Mathematical Society