Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

The inverse function theorem of Nash and Moser


Author: Richard S. Hamilton
Journal: Bull. Amer. Math. Soc. 7 (1982), 65-222
MSC (1980): Primary 58C15; Secondary 58C20, 58D05, 58G30
DOI: https://doi.org/10.1090/S0273-0979-1982-15004-2
MathSciNet review: 656198
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. Andrew Acker, A free boundary optimization problem. II, SIAM J. Math. Anal. 11 (1980), no. 1, 201–209. MR 556510, https://doi.org/10.1137/0511018
  • 2. J. T. Beale, The existence of solitary water waves, Comm. Pure Appl. Math. 30 (1977), 373-389. MR 445136
  • 3. N. Desolneux-Moulis, Theorie du degre dans certains espaces de Fréchet, d'après R. S. Hamilton, Bull. Soc. Math. France, Mem. 46, Journees sur la Geometrie de la Dimension Infinie, 1976, p. 191. MR 440588
  • 4. R. S. Hamilton, Deformation of complex structures on manifolds with boundary.
  • 4. R. S. Hamilton, I.The stable case, J. Differential Geometry 12 (1977), 1-45. MR 477158
  • 4. Richard S. Hamilton, Deformation of complex structures on manifolds with boundary. II. Families of noncoercive boundary value problems, J. Differential Geom. 14 (1979), no. 3, 409–473 (1980). MR 594711
  • 4. R. S. Hamilton, III.Extension of complex structures, preprint, Cornell Univ.
  • 5. R. S. Hamilton, Deformation theory of foliations, preprint, Cornell Univ.
  • 6. Lars Hörmander, The boundary problems of physical geodesy, Arch. Rational Mech. Anal. 62 (1976), 1-52. MR 602181
  • 7. Lars Hörmander, Implicit function theorems, lecture notes, Stanford Univ., 1977.
  • 8. H. Jacobowitz, Implicit function theorems and isometric embeddings, Ann. of Math. (2) 95 (1972), 191-225. MR 307127
  • 9. M. Kuranishi, Deformations of isolated singularities and $øverline \partial \sbb$, J. Differential Geometry.
  • 10. O. A. Ladyzenskaja and N. N. Ural'ceva, Equations aux derivees partielles de type elliptique, Dunod, Paris, 1968, p. 450. MR 239273
  • 11. Martin Lo, Isometric embeddings and deformations of surfaces with boundary in R3, thesis, Cornell Univ., 1981.
  • 12. S. Lojasiewics, Jr. and E. Zehnder, An inverse function theorem in Fréchet spaces, preprint.
  • 13. J. Moser, A rapidly convergent iteration method and non-linear differential equations, Ann. Scuola Norm. Sup. Pisa (3) 20 (1966), 499-535. MR 206461
  • 14. J. Nash, The embedding problem for Riemannian manifolds, Ann. of Math. (2) 63 (1956), 20-63. MR 75639
  • 15. L. Nirenberg, The Weyl and Minkowski problems in differential geometry in the large, Comm. Pure Appl. Math. 6 (1953), 337-394. MR 58265
  • 16. L. Nirenberg, An abstract form of the non-linear Cauchy-Kowalewski Theorem, J. DifferentialGeometry 6 (1972), 561-576. MR 322321
  • 17. P. H. Rabinowitz, Periodic solutions of non-linear hyperbolic partial differential equations. I, Comm. Pure Appl. Math. 20 (1967), 145-205; II, 22 (1968), 15-39.
  • 18. David G. Schaeffer, The capacitor problem, Indiana Univ. Math. J. 24 (1974/75), 1143-1167. MR 393798
  • 19. David G. Schaeffer, A stability theorem for the obstacle problem, Adv. in Math. 17 (1975), 34-47. MR 380093
  • 20. F. Sergeraert, Une generalization du théorème des fonctions implicites de Nash, C. R. Acad. Sci. Paris Ser. A 270 (1970), 861-863. MR 259699
  • 21. F. Sergeraert, Un théorème de fonctions implicites sur certains espaces de Fréchet et quelques applications, Ann. Sci. École Norm. Sup., 4e serie, 5 (1972), 599-660. MR 418140
  • 22. F. Sergeraert, Une extension d'un théorème de fonctions implicites de Hamilton, Bull. Soc. Math. France, Mem. 46, Journées sur la Geometrie de la Dimension Infinite, 1976, p. 191. MR 494210
  • 23. M. Spivak, A comprehensive introduction to differential geometry, vol. 5, Publish or Perish, Berkeley, Calif., 1979.
  • 24. E. Zehnder, Generalized implicit function theorems with applications to some small divisor problems. I, Comm. Pure Appl. Math. 28 (1975), 91-141; II, 29 (1966), 49-113. MR 380867
  • 25. K. Jittorntrum, An implicit function theorem, J. Optim. Theory Appl. 25 (1978), no. 4, 575–577. MR 511620, https://doi.org/10.1007/BF00933522

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1980): 58C15, 58C20, 58D05, 58G30

Retrieve articles in all journals with MSC (1980): 58C15, 58C20, 58D05, 58G30


Additional Information

DOI: https://doi.org/10.1090/S0273-0979-1982-15004-2

American Mathematical Society