Normal, not paracompact spaces
Author:
William G. Fleissner
Journal:
Bull. Amer. Math. Soc. 7 (1982), 233236
MSC (1980):
Primary 54D18, 54E30
DOI:
https://doi.org/10.1090/S027309791982150200
MathSciNet review:
656201
Fulltext PDF
References  Similar Articles  Additional Information

[B] R. H. Bing, Metrization of topological spaces, Canad. J. Math. 3 (1951), 175186. MR 43449

[F_{1}] W. G. Fleissner, A collectionwise Hausdorff, nonnormal Moore space with a alocally countable base, Topology Proc. 4 (1979), 8396. MR 583690

[F_{2}] W. G. Fleissner, Normal Moore spaces, continuum hypothesis and large cardinals, Proc. Nat. Acad. Sci. U. S. A. (to appear). MR 648069

[F3] W. G. Fleissner, If all normal Moore spaces are metrizable, then there is an inner model with a measurable cardinal, Trans. Amer. Math. Soc. (to appear). MR 664048

[F_{4}] W. G. Fleissner, Son of George and V = L, J. Symbolic Logic (to appear). MR 693250

[M] E. Michael, A note on paracompactness, Proc. Amer. Math. Soc. (1953), 831838. MR 56905

[N] C. Navy, ParaLindelöf versus paracompact, Topology Appl. (to appear).

[N_{y}] P. J. Nyikos, A provisional solution to the normal Moore space problem, Proc. Amer. Math. Soc. 78 (1980), 429435. MR 553389

[R] M. E. Rudin, A normal screenable, not paracompact space, Topology Appl. (to appear).

[T] F. D. Tall, The normal Moore space problem, Math. Centre Tracts 116 (1979), 263270. MR 565845

[W] W. S. Watson, Spaces with σlocally countable bases (to appear).
Retrieve articles in Bulletin of the American Mathematical Society with MSC (1980): 54D18, 54E30
Retrieve articles in all journals with MSC (1980): 54D18, 54E30
Additional Information
DOI:
https://doi.org/10.1090/S027309791982150200