Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Smooth extendability of proper holomorphic mappings


Authors: Klas Diederich and John Erik Fornaess
Journal: Bull. Amer. Math. Soc. 7 (1982), 264-268
MSC (1980): Primary 32H99, 32F15
DOI: https://doi.org/10.1090/S0273-0979-1982-15029-7
MathSciNet review: 656208
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. S. Bell and E. Ligocka, A simplification and extension of Fefferman's theorem on biholomorphic mappings, Invent. Math. 57 (1980), 283-289. MR 568937
  • 2. S. Bell. Biholomorphic mappings and the $\bar \partial $-problem, Ann. of Math. (2) 114 (1981), 103-113. MR 625347
  • 3. S. Bell, Proper holomorphic mappings and the Bergman projection, Duke Math. J. 48 (1981), 167-175. MR 610182
  • 4. S. Bell, The Bergman kernel function and proper holomorphic mappings, Preprint (1981). MR 645338
  • 5. S. Bell, Analytic hypoellipticity of the $\bar \partial $-Neumann problem and extendability of holomorphic mappings, Preprint (1981). MR 631091
  • 6. K. Diederich and J. E. Fornaess, Pseudoconvex domains with real-analytic boundary, Ann. of Math. (2) 107 (1978), 371-384. MR 477153
  • 7. K. Diederich and J. E. Fornaess, A remark on a paper of S. Bell, Manuscripta Math. 34 (1981), 31-44. MR 614388
  • 8. K. Diederich and J. E. Fornaess, Proper holomorphic images of strictly pseudoconvex domains, Preprint (1981). MR 656667
  • 9. Ch. Fefferman, The Bergman kernel and biholomorphic mappings of pseudoconvex domains, Invent. Math. 26 (1974), 1-65. MR 350069
  • 10. J. J. Kohn, Harmonic integrals on strongly pseudoconvex manifolds. I and II, Ann. of Math. (2) 78 (1963), 112-148; 79 (1964), 450-472.
  • 11. J. J. Kohn, Subellipticity of the $\bar \partial $-Neumann problem on pseudoconvex domains: sufficient conditions, Acta Math. 142 (1979), 79-122. MR 512213
  • 12. E. Ligocka, How to prove Fefferman's theorem without use of differential geometry, Ann. Polon. Math.
  • 13. S. Pincuk, Proper holomorphic mappings between strongly pseudoconvex domains, Dokl. Akad. Nauk SSSR 241 (1978), 30-33. MR 510886
  • 14. S. Webster, On the proof of boundary smoothness of biholomorphic mappings. Preprint (1978).
  • 15. S. Webster, Biholomorphic mappings and the Bergman kernel off the diagonal, Invent. Math. 51 (1979), 155-169. MR 528021

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1980): 32H99, 32F15

Retrieve articles in all journals with MSC (1980): 32H99, 32F15


Additional Information

DOI: https://doi.org/10.1090/S0273-0979-1982-15029-7

American Mathematical Society