author does not make far-ranging conjectures, and does not philosophize. The book is lean and beautiful.

REFERENCES

1. B. J. Birch [1957], Homogeneous forms of odd degree in a large number of variables, Mathematika 4, 102–105.
13. Yu. V. Linnik [1960], All large numbers are sums of a prime and two squares (A problem of Hardy and Littlewood), I, Mat. Sb. (N.S.) 52 (94), 661–700. (Russian)
19. _____ [1971], The method of trigonometrical sums in the theory of numbers, Moscow. (Russian)

WOLFGANG M. SCHMIDT
more specifically to bifurcation problems. During this period much progress has been made in bifurcation theory.

One basic approach that has evolved is to apply the Implicit Function Theorem (IFT) for values of the eigenparameter \(\lambda \) to obtain local uniqueness. This approach is continued until a nonempty null space of the Fréchet derivatives of the operator makes the IFT no longer applicable. The value of the eigenparameter at which this happens is a potential bifurcation point, and the method then is to project out the null space of the derivative of the nonlinear operator evaluated at the potential bifurcation point and again apply the IFT to prove the existence of a branch of nontrivial solutions. The stability of this new branch of solutions can then be investigated by once more using perturbation theory and the IFT. For an excellent discussion of the above approach, see [1].

The method of the preceding paragraph is essentially impossible when the dimension of the null space is large. Most often the dimension of the null space can be reduced by considering a restricted space of functions, and many problems have been solved by restricting the space to the extent that the null space is one dimensional. Of course, the resulting solution is not complete, the biggest shortfall being that the stability considered applies only to perturbations of functions in the restricted function space. No information is obtained concerning stability to more general perturbations. See [2] for a discussion of stability of bifurcating branches.

Most often the dimension of the null space is large due to a class of related symmetries. As Sattinger points out in [3], the fact that the equations of continuum mechanics are invariant with respect to a subgroup of the Euclidean group is a consequence of their derivation. Hence, such an invariance is often present.

These symmetries were recognized and handled by several authors in the late 1960's and early 1970's. See, for example, [4 or 5]. However, in an excellent series of papers Sattinger [6, 7, 8, 9] began the work of formally developing bifurcation and stability theory of functions that are equivariant with respect to a given group.

Since the appearance of the papers by Sattinger the subject of group theoretic bifurcation theory has expanded greatly. This expansion includes applications such as [10 and 11], the book under review and the set of lecture notes [3]. In addition, similar results have been obtained via singularity theory in [12, 13 and 14].

The book Group theoretic methods in bifurcation theory begins with an excellent review of bifurcation and stability theory and a chapter on some of the essentials of group representation theory which this reviewer felt was too brief. However, the major content of the book is a research monograph based largely on the papers [6, 7, 8 and 9]. The material presented has been superseded by the work of [12, 13, 14 and 3]. In fact, as is shown in both [14 and 3], the results of the main application given in the book, namely symmetry breaking in the Bénard problem, are incomplete.

The monograph does, however, still have its merits. The review of bifurcation theory and the discussion of the general setting for the application of
group theoretic methods to bifurcation theory make it an excellent preliminary to the notes [3] or the papers [12, 13 and 14]. The main shortcoming of the book is that, as perhaps should be the case with any three year old research monograph, it is no longer the latest word in the field.

REFERENCES

J. W. THOMAS