Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Schrödinger semigroups


Author: Barry Simon
Journal: Bull. Amer. Math. Soc. 7 (1982), 447-526
MSC (1980): Primary 81-02, 35-02; Secondary 47F05, 35P05
DOI: https://doi.org/10.1090/S0273-0979-1982-15041-8
Erratum: Bull. Amer. Math. Soc. (N.S.), Volume 11, Number 2 (1984), 426--426
MathSciNet review: 670130
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. S. Agmon, Spectral properties of Schrödinger operators and scattering theory, Ann. Scuola Norm Sup. Pisa II 2 (1979), 151-218. MR 397194
  • 2. S. Agmon, On exponential decay of solutions of second order elliptic equations in unbounded domains, Proc. Conf. A. Pleijel.
  • 3. S. Agmon, private communication (in preparation).
  • 4. Shmuel Agmon, Lectures on exponential decay of solutions of second-order elliptic equations: bounds on eigenfunctions of 𝑁-body Schrödinger operators, Mathematical Notes, vol. 29, Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo, 1982. MR 745286
  • 5. J. Aguilar and J. Combes, A class of analytic perturbations for one-body Schrödinger Hamiltonians, Comm. Math. Phys. 22 (1971), 269-279. MR 345551
  • 6. R. Ahlrichs, Asymptotic behavior of atomic bound state wave functions, J. Math. Phys. 14 (1973), 1860-1863. MR 351312
  • 7. R. Ahlrichs, M. Hoffman-Ostenhof and T. Hoffman-Ostenhof, Bounds on the long-range behavior of atomic wave functions, J. Chem. Phys. 68 (1978), 1402-1410.
  • 8. Reinhart Ahlrichs, Maria Hoffmann-Ostenhof, Thomas Hoffmann-Ostenhof, and John D. Morgan III, Bounds on the decay of electron densities with screening, Phys. Rev. A (3) 23 (1981), no. 5, 2106–2117. MR 611815, https://doi.org/10.1103/PhysRevA.23.2106
  • 9. M. Aizenman and B. Simon, Brownian motion and Harnack inequality for Schrödinger operators, Comm. Pure Appl. Math. 35 (1982), no. 2, 209–273. MR 644024, https://doi.org/10.1002/cpa.3160350206
  • 10. S. Albeverio, R. Hoegh-Krohn and L. Streit, Energy forms, Hamiltonians and distorted Brownian paths, J. Math. Phys. 18 (1977), 907-917. MR 446236
  • 11. S. Albeverio, R. Høegh-Krohn, and L. Streit, Regularization of Hamiltonians and processes, J. Math. Phys. 21 (1980), no. 7, 1636–1642. MR 575597, https://doi.org/10.1063/1.524649
  • 12. V. de Alfaro and T. Regge, Potential scattering, North-Holland, Amsterdam, 1965.
  • 13. W. Allegretto, On the equivalence of two types of oscillation for elliptic operators, Pacific J. Math. 55 (1974), 319-328. MR 374628
  • 14. Walter Allegretto, Spectral estimates and oscillations of singular differential operators, Proc. Amer. Math. Soc. 73 (1979), no. 1, 51–56. MR 512057, https://doi.org/10.1090/S0002-9939-1979-0512057-7
  • 15. W. Allegretto, Positive solutions and spectral properties of second order elliptic operators, Pacific J. Math. 92 (1981), no. 1, 15–25. MR 618041
  • 16. W. O. Amrein, A.-M. Berthier, and V. Georgescu, 𝐿^{𝑝}-inequalities for the Laplacian and unique continuation, Ann. Inst. Fourier (Grenoble) 31 (1981), no. 3, vii, 153–168 (English, with French summary). MR 638622
  • 17. J. Avron and I. Herbst, Spectral and scattering theory of Schrödinger operators related to the Stark effect, Comm. Math. Phys. 52 (1977), 239-254. MR 468862
  • 18. Joseph Avron and Barry Simon, Singular continuous spectrum for a class of almost periodic Jacobi matrices, Bull. Amer. Math. Soc. (N.S.) 6 (1982), no. 1, 81–85. MR 634437, https://doi.org/10.1090/S0273-0979-1982-14971-0
  • 19. J. Avron and B. Simon, Almost periodic Schrödinger operators. II, The density of states (preprint)
  • 20. N. Bazley and D. Fox, Bounds for eigenfunctions of one-electron molecular systems, Internat. J. Quant. Chem. 3 (1969), 581-586.
  • 21. M. Benderskii and L. Pastur, On the spectrum of the one dimensional Schrödinger equation with a random potential, Mat. Sb. 82 (1970), 245-256. MR 262623
  • 22. J. Berezanskii, On expansion according to eigenfunctions of general self-adjoint differential operators, Dokl. Akad. Nauk SSSR 108 (1956), 379-382. MR 80895
  • 23. J. Berezanskii, Expansions in eigenfunctions of self adjoint operators, Transl. Math. Mono., vol. 17, Amer. Math. Soc., Providence, R.I., 1968. MR 222718
  • 24. F. Berezin, Wick and anti-Wick symbols, Math. USSR Sb. 15 (1971), 577-606.
  • 25. Anne-Marie Berthier, Sur le spectre ponctuel de l’opérateur de Schrödinger, C. R. Acad. Sci. Paris Sér. A-B 290 (1980), no. 8, A393–A395 (French, with English summary). MR 567538
  • 26. A. M. Berthier, On the point spectrum of Schrödinger operators, Ann. Sci. École Norm. Sup. (to appear).
  • 27. Anne-Marie Berthier and Bernard Gaveau, Critère de convergence des fonctionnelles de Kac et application en mécanique quantique et en géométrie, J. Funct. Anal. 29 (1978), no. 3, 416–424 (French). MR 512253, https://doi.org/10.1016/0022-1236(78)90039-3
  • 28. M. Birman and M. Krein, On the theory of wave operators and scattering operators, Dokl. Akad. Nauk SSSR 144 (1962), 475-478. MR 139007
  • 29. H. Brascamp and E. H. Lieb, Best constants in Young's inequality, its converse and its generalization to more than three functions, Adv. in Math. 20 (1976), 151-173. MR 412366
  • 30. H. Brascamp, E. Lieb and J. Luttinger, A general rearrangement inequality for multiple integrals, J. Funct. Anal. 17 (1974), 227-237. MR 346109
  • 31. Haïm Brézis and Tosio Kato, Remarks on the Schrödinger operator with singular complex potentials, J. Math. Pures Appl. (9) 58 (1979), no. 2, 137–151. MR 539217
  • 32. F. Browder, Eigenfunction expansions for formally self-adjoint partial differential operators. I, II, Proc. Nat. Acad. Sci. USA 42 (1956), 769-771; 870-872. MR 92091
  • 33. T. Carleman, Sur un problème d'unicité pour les systèmes d'équations aux dérivés partielles à deux variables indépendantes, Ark. Mat. 26B (1939), 1-9.
  • 34. René Carmona, Regularity properties of Schrödinger and Dirichlet semigroups, J. Funct. Anal. 33 (1979), no. 3, 259–296. MR 549115, https://doi.org/10.1016/0022-1236(79)90068-5
  • 35. René Carmona, Pointwise bounds for Schrödinger eigenstates, Comm. Math. Phys. 62 (1978), no. 2, 97–106. MR 505706
  • 36. René Carmona, Exponential localization in one-dimensional disordered systems, Duke Math. J. 49 (1982), no. 1, 191–213. MR 650377
  • 37. R. Carmona and B. Simon, Pointwise bounds on eigenfunctions and wave packets in 𝑁-body quantum systems. V. Lower bounds and path integrals, Comm. Math. Phys. 80 (1981), no. 1, 59–98. MR 623152
  • 38. Kai Lai Chung and S. R. S. Varadhan, Kac functional and Schrödinger equation, Studia Math. 68 (1980), no. 3, 249–260. MR 599148, https://doi.org/10.4064/sm-68-3-249-260
  • 39. Kai Lai Chung and K. Murali Rao, Sur la théorie du potentiel avec la fonctionnelle de Feynman-Kac, C. R. Acad. Sci. Paris Sér. A-B 290 (1980), no. 13, A629–A631 (French, with English summary). MR 572652
  • 40. J. Combes, Time dependent approach to multichannel scattering, Nuovo Cimento A 64 (1969), 111-144.
  • 41. J.-M. Combes, M. Hoffmann-Ostenhof, and T. Hoffmann-Ostenhof, Asymptotics of atomic ground states: the relation between the ground state of helium and the ground state of 𝐻𝑒⁺, J. Math. Phys. 22 (1981), no. 6, 1299–1305. MR 621279, https://doi.org/10.1063/1.525023
  • 42. J. Combes, R. Schrader and R. Seiler, Classical bounds and limits for energy distributions of Hamiltonian operators in electromagnetic fields, Ann. Physics 111 (1978), 1-18. MR 489509
  • 43. J. Combes and L. Thomas, Asymptotic behavior of eigenfunctions for multi-particle Schrödinger operators, Comm. Math. Phys. 34 (1973), 251-270. MR 391792
  • 44. M. Cwickel, Weak type estimates and the number of bound states of Schrödinger operators, Ann. of Math. (2) 106 (1977), 93-102. MR 473576
  • 45. E. B. Davies, Properties of Green's functions of some Schrödinger operators, J. London Math. Soc. 7 (1973), 473-491.
  • 46. E. B. Davies, Eigenfunction expansions for singular Schrödinger operators, Arch. Rational Mech. Anal. 63 (1977), 261. MR 426690
  • 47. E. B. Davies, Some norm bounds and quadratic form inequalities for Schrödinger operators, J. Operator Theory 9 (1983), no. 1, 147–162. MR 695944
  • 48. E. B. Davies, JWKB and related bounds on Schrödinger eigenfunctions, Bull. London Math. Soc. 14 (1982), no. 4, 273–284. MR 663479, https://doi.org/10.1112/blms/14.4.273
  • 49. E. B. Davies and B. Simon, Scattering theory for systems with different spatial asymptotics on the left and right, Comm. Math. Phys. 63 (1978), no. 3, 277–301. MR 513906
  • 50. P. Deift, W. Hunziker, B. Simon, and E. Vock, Pointwise bounds on eigenfunctions and wave packets in 𝑁-body quantum systems. IV, Comm. Math. Phys. 64 (1978/79), no. 1, 1–34. MR 516993
  • 51. M. Eastham, The spectral theory of periodic differential equations, Scottish Academic Press, 1973.
  • 52. J. P. Eckmann, Hypercontractivity for anharmonic oscillators, J. Funct. Anal. 16 (1974), 388-404. MR 372683
  • 53. V. Enss, A note on Hunziker's theorem, Comm. Math. Phys. 52 (1977), 233-238. MR 446195
  • 54. W. Faris, Perturbations and non-normalizable eigenvectors, Helv. Phys. Acta 44 (1971), 936. MR 356751
  • 55. W. Faris, Quadratic forms and essential self-adjointness, Helv. Phys. Acta 45 (1972), 1074-1088. MR 383964
  • 56. W. Faris, Essential self-adjointness of operators in ordered Hilbert space, Comm. Math. Phys. 30 (1973), 23-34. MR 323265
  • 57. W. Faris, private communication.
  • 58. W. Faris and R. Lavine, Commutators and self-adjointness of Hamiltonian operators, Comm. Math. Phys. 35 (1974), 39-48. MR 391794
  • 59. H. Federer, Geometric measure theory,Springer-Verlag, Berlin and New York, 1969. MR 257325
  • 60. R. Froese, I. Herbst, M. Hoffman-Ostenhof and T. Hoffman-Ostenhof, L, Comm. Math. Phys. (to appear).
  • 61. Daisuke Fujiwara, A construction of the fundamental solution for the Schrödinger equation, J. Analyse Math. 35 (1979), 41–96. MR 555300, https://doi.org/10.1007/BF02791062
  • 62. Daisuke Fujiwara, On a nature of convergence of some Feynman path integrals. I, Proc. Japan Acad. Ser. A Math. Sci. 55 (1979), no. 6, 195–200. MR 542391
  • 63. Daisuke Fujiwara, Remarks on convergence of the Feynman path integrals, Duke Math. J. 47 (1980), no. 3, 559–600. MR 587166
  • 64. M. Fukushima, On the spectral distribution of a disordered system and the range of a random walk, Osaka J. Math. 11 (1974), 73-85. MR 353462
  • 65. Masatoshi Fukushima, On holomorphic diffusions and plurisubharmonic functions, Geometry of random motion (Ithaca, N.Y., 1987) Contemp. Math., vol. 73, Amer. Math. Soc., Providence, RI, 1988, pp. 65–78. MR 954630, https://doi.org/10.1090/conm/073/954630
  • 66. M. Fukushima and S. Nakao, On spectra of the Schrödinger operator with a white noise potential, Z. Wahrsch. Verw. Gebiete 37 (1977), 267-274. MR 438481
  • 67. L. Garding, Eigenfunction expansions connected with elliptic differential operators, Tolfte Skend. Mat. Lund, 1953, pp. 44-45. MR 71625
  • 68. Bernard Gaveau and Edmond Mazet, Divergence des fonctionnelles de Kac et diffusion quantique, C. R. Acad. Sci. Paris Sér. A-B 291 (1980), no. 9, A559–A562 (French, with English summary). MR 600171
  • 69. I. Gel'fand, Expansion in series of eigenfunctions of an equation with periodic coefficients, Dokl. Akad. Nauk SSSR 73 (1950), 1117-1120. MR 39154
  • 70. I. Gel'fand and A. Kostjucenko, Expansion in eigenfunctions of differential and other operators, Dokl. Akad. Nauk SSSR 103 (1955), 349-352. MR 73136
  • 71. V. Georgescu, On the unique continuation property for Schrödinger Hamiltonians, Helv. Phys. Acta 52 (1979), no. 5-6, 655–670 (1980). MR 576454
  • 72. D. Gilvarg and N. Trudinger, Elliptic partial differential equations of second order, Springer-Verlag, Berlin and New York, 1977. MR 473443
  • 73. J. Glimm, Boson fields with nonlinear self-interaction in two dimensions, Comm. Math. Phys. 8 (1968), 12-25. MR 231601
  • 74. J. Glimm and A. Jaffe, A λф4 quantum field theory without cutoffs. I, Phys. Rev. 176 (1968), 1945-1951. MR 247845
  • 75. J. Glimm and A. Jaffe, The λ(ф4)2 quantum field theory without cutoffs. II. The field operators and the approximate vacuum, Ann. of Math. (2) 91 (1970), 362-401. MR 256677
  • 76. James Glimm and Arthur Jaffe, Quantum physics, Springer-Verlag, New York-Berlin, 1981. A functional integral point of view. MR 628000
  • 77. Ya. Goldshtein, S. Molchanov and L. Pastur, A pure point spectrum of the stochastic one-dimensional Schrödinger operator, Funkcional Anal. i Priložen. 11 (1977), 1. MR 470515
  • 78. L. Gross, Logarithmic Sobolev inequalities, Amer. J. Math. 97 (1976), 1061-1083. MR 420249
  • 79. E. Heinz, Über die Eindautigkeit beim Cauchyschen Anfabgswertproblem einer elliptischen differentialgleichung zweiter Ordnung, Nach. Akad. Wiss. Göttingen Math.-Phys. Kl. Il (1955), 1-12. MR 74666
  • 80. Ira W. Herbst, Dilation analyticity in constant electric field. I. The two body problem, Comm. Math. Phys. 64 (1979), no. 3, 279–298. MR 520094
  • 81. I. W. Herbst and J. S. Howland, The Stark ladder and other one-dimensional external field problems, Comm. Math. Phys. 80 (1981), no. 1, 23–42. MR 623150
  • 82. Ira W. Herbst and B. Simon, Dilation analyticity in constant electric field. II. 𝑁-body problem, Borel summability, Comm. Math. Phys. 80 (1981), no. 2, 181–216. MR 623157
  • 83. I. Herbst and A. Sloan, Perturbations of translation invariant positivity preserving semigroups in L2(R), Trans. Amer. Math. Soc. 236 (1978), 325-360. MR 470750
  • 84. H. Hess, R. Schrader and D. Uhlenbrock, Domination of semigroups and generalization of Kato's inequality, Duke Math. J. 44 (1977), 893-904. MR 458243
  • 85. R. Hoegh-Krohn, A general class of quantum field theories without cutoffs in two space-time dimensions, Comm. Math. Phys. 21 (1971), 244-255. MR 292433
  • 86. M. Hoffman-Ostenhof and T. Hoffman-Ostenhof, Schrödinger inequalities and asymptotic behavior of the electron density of atoms and molecules, Phys. Rev. A 16 (1977), 1782-1785. MR 471726
  • 87. M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, and B. Simon, On the nodal structure of atomic eigenfunctions, J. Phys. A 13 (1980), no. 4, 1131–1133. MR 565760
  • 88. M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, and B. Simon, Brownian motion and a consequence of Harnack’s inequality: nodes of quantum wave functions, Proc. Amer. Math. Soc. 80 (1980), no. 2, 301–305. MR 577764, https://doi.org/10.1090/S0002-9939-1980-0577764-7
  • 89. M. Hoffmann-Ostenhof and R. Seiler, Cusp conditions for eigenfunctions of 𝑛-electron systems, Phys. Rev. A (3) 23 (1981), no. 1, 21–23. MR 597107, https://doi.org/10.1103/PhysRevA.23.21
  • 90. Thomas Hoffmann-Ostenhof, A comparison theorem for differential inequalities with applications in quantum mechanics, J. Phys. A 13 (1980), no. 2, 417–424. MR 558638
  • 91. Thomas Hoffmann-Ostenhof, Lower and upper bounds to the decay of the ground state one-electron density of helium-like systems, J. Phys. A 12 (1979), no. 8, 1181–1187. MR 536921
  • 92. T. Hoffman-Ostenhof, A lower bound to the decay of ground states of two electron atoms, Phys. Lett. A 77 (1980), 140-142.
  • 93. T. Hoffman-Ostenhof and M. Hoffman-Ostenhof, Bounds to expectation values and exponentially decreasing upper bounds to the one electron density of atoms, J. Phys. B 11 (1978), 17-24.
  • 94. T. Hoffman-Ostenhof and M. Hoffman-Ostenhof, Exponentially decreasing upper bounds to the electron density of atoms, Phys. Lett. A 59 (1976), 373-374.
  • 95. T. Hoffman-Ostenhof, M. Hoffman-Ostenhof and R. Ahlrichs, Schrödinger inequalities and asymptotic behavior of many electron densities, Phys. Rev. A 18 (1978), 328-334.
  • 96. James G. Hooton, Dirichlet forms associated with hypercontractive semigroups, Trans. Amer. Math. Soc. 253 (1979), 237–256. MR 536945, https://doi.org/10.1090/S0002-9947-1979-0536945-5
  • 97. James G. Hooton, Dirichlet semigroups on bounded domains, Rocky Mountain J. Math. 12 (1982), no. 2, 283–297. MR 661738, https://doi.org/10.1216/RMJ-1982-12-2-283
  • 98. L. Hörmander, Seminar Schwarz, 1981.
  • 99. L. Hörmander, Linear partial differential operators, Springer-Verlag, Berlin and New York, 1964. MR 248435
  • 100. W. Hunziker, Space-time behavior of Schrödinger wave functions, J. Math. Phys. 7 (1966), 300-304. MR 193939
  • 101. T. Ikebe, Eigenfunction expansions associated with the Schrödinger operators and their applications to scattering theory, Arch. Rational Mech. Anal. 5 (1960), 1-34; Erratum: J. Fac. Sci. Tokyo Univ. 17 (1970), 355-361. MR 128355
  • 102. T. Ikebe, Spectral representation for Schrödinger operators with long-range potentials. I, II, J. Funct. Anal. 20 (1975), 158-177; Publ. Res. Inst Math. Sci. 11 (1976), 551-558. MR 440213
  • 103. Teruo Ikebe and Hiroshi Isozaki, Completeness of modified wave operators for long-range potentials, Publ. Res. Inst. Math. Sci. 15 (1979), no. 3, 679–718. MR 566076, https://doi.org/10.2977/prims/1195187871
  • 104. Hiroshi Isozaki, On the long-range stationary wave operator, Publ. Res. Inst. Math. Sci. 13 (1977/78), no. 3, 589–626. MR 479087, https://doi.org/10.2977/prims/1195189601
  • 105. Arne Jensen and Tosio Kato, Asymptotic behavior of the scattering phase for exterior domains, Comm. Partial Differential Equations 3 (1978), no. 12, 1165–1195. MR 512084, https://doi.org/10.1080/03605307808820089
  • 106. R. Johnson and J. Moser, The rotation number for almost periodic potentials, Comm. Math. Phys. 84 (1982), no. 3, 403–438. MR 667409
  • 107. G. Kac, Expansion in characteristic functions of self-adjoint operators, Dokl. Akad. Nauk SSSR 119 (1958), 19-22. MR 104896
  • 108. H. Kalf, U. Schminzke, J. Walter and R. Wüst, On the spectral theory of Schrödinger and Dirac operators with strongly singular potentials, Lecture Notes in Math., vol. 448, Springer-Verlag, Berlin and New York, 1975. MR 397192
  • 109. B. Karlerson, Self-adjointness of Schrödinger operators, Institut Mittag-Leffler Rep. no. 6, 1976.
  • 110. T. Kato, On the eigenfunctions of many particle systems in quantum mechanics, Comm. Pure Appl. Math. 10 (1957), 151-171. MR 88318
  • 111. T. Kato, Wave operators and similarity for some non-selfadjoint operators, Math. Ann. 162 (1966), 258-279. MR 190801
  • 112. T. Kato, Schrödinger operators with singular potentials, Israel J. Math. 13 (1973), 135-148. MR 333833
  • 113. T. Kato, Remarks on Schrödinger operators with vector potentials, Integral Equations Operator Theory 1 (1978), 103-113. MR 470516
  • 114. T. Kato, Perturbation theory for linear operators, Springer-Verlag, Berlin and New York, 1966. MR 203473
  • 115. R. Khas'minskii, On positive solutions of the equation Uu + Vu = 0, Theory Probab. Appl. 4 (1959), 309-318. MR 123373
  • 116. Werner Kirsch and Fabio Martinelli, On the density of states of Schrödinger operators with a random potential, J. Phys. A 15 (1982), no. 7, 2139–2156. MR 665829
  • 117. H. Kitada, Scattering theory for Schrödinger operators with long range potential. I, II, J. Math. Soc. Japan 29 (1977), 655-691; 30 (1978), 603-632. MR 634803
  • 118. Hitoshi Kitada, On a construction of the fundamental solution for Schrödinger equations, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27 (1980), no. 1, 193–226. MR 573337
  • 119. Hitoshi Kitada and Hitoshi Kumano-go, A family of Fourier integral operators and the fundamental solution for a Schrödinger equation, Osaka J. Math. 18 (1981), no. 2, 291–360. MR 628838
  • 120. V. Korotkov, Integral operators with Carleman kernels, Dokl. Akad. Nauk SSSR 165 (1965), 748-757. MR 209921
  • 121. S. Kotani, On asymptotic behavior of the spectra of a one dimensional Hamiltonian with a certain random coefficient, Publ. Res. Inst. Math. Sci. 12 (1976), 447-476. MR 433610
  • 122. V. F. Kovalenko, M. A. Perel′muter, and Ya. A. Semenov, Schrödinger operators with 𝐿^{1/2}_{𝑊}(𝑅^{𝑙})-potentials, J. Math. Phys. 22 (1981), no. 5, 1033–1044. MR 622855, https://doi.org/10.1063/1.525009
  • 123. V. F. Kovalenko and Ju. A. Semenov, Some questions on expansions in generalized eigenfunctions of a Schrödinger operator with strongly singular potentials, Uspekhi Mat. Nauk 33 (1978), no. 4(202), 107–140, 255 (Russian). MR 510671
  • 124. M. G. Krein, On the trace formula in the theory of perturbation, Mat. Sb. 33 (1953), 597-626. MR 60742
  • 125. M. G. Krein, On perturbation determinants and a trace formula for unitary and selfadjoint operators, Dokl. Akad. Nauk SSSR 144 (1962), 268-271. MR 139006
  • 126. S. Kuroda, Scattering theory for differential operators. I, II, J. Math. Soc. Japan 25 (1973), 75-104; 222-234.
  • 127. R. Lavine, The local spectral density and its classical limit (preprint).
  • 128. Herbert Leinfelder, Gauge invariance of Schrödinger operators and related spectral properties, J. Operator Theory 9 (1983), no. 1, 163–179. MR 695945
  • 129. Herbert Leinfelder and Christian G. Simader, Schrödinger operators with singular magnetic vector potentials, Math. Z. 176 (1981), no. 1, 1–19. MR 606167, https://doi.org/10.1007/BF01258900
  • 130. Elliott H. Lieb and Barry Simon, Pointwise bounds on eigenfunctions and wave packets in 𝑁-body quantum systems. VI. Asymptotics in the two-cluster region, Adv. in Appl. Math. 1 (1980), no. 3, 324–343. MR 603134, https://doi.org/10.1016/0196-8858(80)90015-9
  • 131. L. Lithner, A theorem of Phragmón Lindelof type for second order elliptic operators, Ark. Mat. 5 (1965), 281-285. MR 168901
  • 132. V. Maslov, On the asymptotics of generalized functions of the Schrödinger equation, Uspehi Mat. Nauk. 16 (1961), 253-254.
  • 133. H. McKean, -Δ plus a bad potential, J. Math. Phys. 18 (1977), 1277-1279. MR 436826
  • 134. S. Mercuriev, On the asymptotic form of three body wave functions for the discrete spectrum, Soviet J. Nuclear Phys. 19 (1974), 222-229.
  • 135. S. Molcanov, The structure of eigenfunctions of one dimensional unordered structures, Math. USSR-Isv. 12 (1978), 69-101. MR 486981
  • 136. J. Morgan, The exponential decay of subcontinuum wave functions of two electron atoms, J. Phys. A 10 (1977), 291.
  • 137. J. Moser, On Harnack 's theorem for elliptic differential equations, Comm. Pure Appl. Math. 14 (1961), 577-591. MR 159138
  • 138. William F. Moss and John Piepenbrink, Positive solutions of elliptic equations, Pacific J. Math. 75 (1978), no. 1, 219–226. MR 500041
  • 139. C. Muller, On the behavior of the solution of the differential equation Δu = f(x, u) in the neighborhood of a point, Comm. Pure Appl. Math. 1 (1954), 505-515. MR 62920
  • 140. S. Nakao, On the spectral distribution of the Schrödinger operator with a random potential, Japan J.Math. 3 (1977), 111-139. MR 651925
  • 141. E. Nelson, A quartic interaction in two dimension, Mathematical Theory of Elementary Particles, MIT Press, Cambridge, Mass., 1966, pp. 69-73. MR 210416
  • 142. E. Nelson, The free Markov field, J. Funct. Anal. 12 (1973), 211-227. MR 343816
  • 143. A. O'Connor, Exponential decay of bound state wave functions, Comm. Math. Phys. 32 (1973), 319-340. MR 336119
  • 144. L. Pastur, On the Schrödinger equation with a random potential, Teoret. Mat. Fiz. 6 (1971), 415-424. (Russian) MR 473499
  • 145. L. Pastur, On the distribution of the eigenvalues of the Schrödinger equation with a random potential, Funkcional. Anal. i Priložen. 6 (1972), 93-94. (Russian) MR 296759
  • 146. L. Pastur, Spectrum of random selfadjoint operators, Uspehi. Mat. Nauk. 28 (1973), 1-64. MR 406251
  • 147. L. Pastur, Behavior of some Wiener integrals as t → + ∞ and the density of states of Schrödinger equation with a random potential, Teoret. Mat. Fiz. 32 (1977), 88-95. (Russian) MR 449356
  • 148. L. A. Pastur, Spectral properties of disordered systems in the one-body approximation, Comm. Math. Phys. 75 (1980), no. 2, 179–196. MR 582507
  • 149. D. Pearson, Singular measures in scattering theory, Comm. Math. Phys. 60 (1978), 13. MR 484145
  • 150. M. A. Perel′muter, Perturbation of operators with an integral resolvent, Funktsional. Anal. i Prilozhen. 14 (1980), no. 2, 75–76 (Russian). MR 575221
  • 151. P. Perry, I. M. Sigal, and B. Simon, Spectral analysis of 𝑁-body Schrödinger operators, Ann. of Math. (2) 114 (1981), no. 3, 519–567. MR 634428, https://doi.org/10.2307/1971301
  • 152. A. Persson, Bounds for the discrete part of the spectrum of a semibounded Schrödinger operator, Math. Scand. 8 (1960), 143-153. MR 133586
  • 153. J. Piepenbrink, Nonoscillatory elliptic equations, J. Differential Equations 15 (1974), 541-550. MR 342829
  • 154. J. Piepenbrink, A conjecture of Glazman, J.Differential Equations 24 (1977), 173-177. MR 454400
  • 155. S. Port and C. Stone, Brownian motion and classical potential theory, Academic Press, New York, 1978. MR 492329
  • 156. N. Portenko, Diffusion processes with unbounded drift coefficient, Theory Probab. Appl. 20 (1976), 27-37. MR 375483
  • 157. A. Povzner, On the expansion of arbitrary functions in terms of the eigenfunctions of the operatoru + cu, Mat. Sb. (N.S.) 32 (1953), 109-156. (Russian) MR 53330
  • 158. A. Povzner, On eigenfunction expansions in terms of scattering solutions, Dokl. Akad. Nauk SSSR 104 (1955). MR 78506
  • 159. J. Rauch, private communication.
  • 160. Michael Reed and Barry Simon, Methods of modern mathematical physics. I, 2nd ed., Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1980. Functional analysis. MR 751959
  • 161. Michael Reed and Barry Simon, Methods of modern mathematical physics. I, 2nd ed., Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1980. Functional analysis. MR 751959
  • 162. Michael Reed and Barry Simon, Methods of modern mathematical physics. I, 2nd ed., Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1980. Functional analysis. MR 751959
  • 163. J. Rosen, Sobolev inequalities for weighted spaces and supercontractive estimates, Trans. Amer. Math. Soc. 222 (1976), 367-376. MR 425601
  • 164. O. Rothhaus, Lower bounds for eigenvalues of regular Sturm-Liouville operators and the logarithmic Sobolev inequality, Duke Math. J. 45 (1978), 351-362. MR 481241
  • 165. O. S. Rothaus, Logarithmic Sobolev inequalities and the spectrum of Sturm-Liouville operators, J. Funct. Anal. 39 (1980), no. 1, 42–56. MR 593787, https://doi.org/10.1016/0022-1236(80)90018-X
  • 166. O. S. Rothaus, Diffusion on compact Riemannian manifolds and logarithmic Sobolev inequalities, J. Funct. Anal. 42 (1981), no. 1, 102–109. MR 620581, https://doi.org/10.1016/0022-1236(81)90049-5
  • 167. O. S. Rothaus, Logarithmic Sobolev inequalities and the spectrum of Schrödinger operators, J. Funct. Anal. 42 (1981), no. 1, 110–120. MR 620582, https://doi.org/10.1016/0022-1236(81)90050-1
  • 168. Y. Saito, Eigenfunctions for the Schrödinger operators with long range potentials Q(y) = O(|y| (ε > 0), Osaka J. Math. 14 (1977), 11-35.
  • 169. Jean-Claude Saut and Bruno Scheurer, Un théorème de prolongement unique pour des opérateurs elliptiques dont les coefficients ne sont pas localement bornés, C. R. Acad. Sci. Paris Sér. A-B 290 (1980), no. 13, A595–A598 (French, with English summary). MR 572644
  • 170. M. Schechter, Hamiltonians for singular potentials, Indian Math. J. 22 (1972), 483-503. MR 305150
  • 171. M. Schechter, Essential self-adjointness of the Schrödinger operator with magnetic vector potential, J. Funct. Anal. 20 (1975), 93-104. MR 510055
  • 172. Martin Schechter, Spectra of partial differential operators, 2nd ed., North-Holland Series in Applied Mathematics and Mechanics, vol. 14, North-Holland Publishing Co., Amsterdam, 1986. MR 869254
  • 173. M. Schechter and B. Simon, Unique continuation for Schrödinger operators with unbounded potentials, J. Math. Anal. Appl. 77 (1980), no. 2, 482–492. MR 593229, https://doi.org/10.1016/0022-247X(80)90242-5
  • 174. I. Sch'nol, On the behavior of the Schrödinger equation, Mat. Sb. 42 (1957), 273-286. (Russian)
  • 175. I. Segal, Construction of nonlinear local quantum processes. I, Ann. of Math. (2) 92 (1970), 462-481. MR 272306
  • 176. I. Segal, Construction of nonlinear local quantum processes. II, Invent. Math. 14 (1971), 211-241. MR 295695
  • 177. I. Sigal, Geometricparametrices in the QM N-body problem, Duke Math. J. (to appear).
  • 178. B. Simon, Essential self-adjointness of Schrödinger operators with positive potentials, Math. Ann. 201 (1973), 211-220. MR 337215
  • 179. B. Simon, Schrödinger operators with singular magnetic vector potentials, Math. Z. 131 (1973), 361-370. MR 322336
  • 180. B. Simon, Pointwise bounds on eigenfunctions and wave packets in N-body quantum systems. I, Proc. Amer. Math. Soc. 42 (1974), 395-401. MR 417596
  • 181. B. Simon, Pointwise bounds on eigenfunctions and wave packets in N-body quantum systems. II, Proc. Amer. Math. Soc. 45 (1974), 454-456. MR 417596
  • 182. B. Simon, Pointwise bounds on eigenfunctions and wave packets in N-body quantum systems. III, Trans. Amer. Math. Soc. 208 (1975), 317-329. MR 417597
  • 183. B. Simon, A remark on Nelson's best hypercontractive estimates, Proc. Amer. Math. Soc. 55 (1976), 376-378. MR 400995
  • 184. B. Simon, An abstract Kato's inequality for generators of positivity preserving semigroups, Indian Math. J. 26 (1977), 1067-1073. MR 461209
  • 185. Barry Simon, Kato’s inequality and the comparison of semigroups, J. Funct. Anal. 32 (1979), no. 1, 97–101. MR 533221, https://doi.org/10.1016/0022-1236(79)90079-X
  • 186. Barry Simon, Phase space analysis of simple scattering systems: extensions of some work of Enss, Duke Math. J. 46 (1979), no. 1, 119–168. MR 523604
  • 187. Barry Simon, Maximal and minimal Schrödinger forms, J. Operator Theory 1 (1979), no. 1, 37–47. MR 526289
  • 188. Barry Simon, The classical limit of quantum partition functions, Comm. Math. Phys. 71 (1980), no. 3, 247–276. MR 565281
  • 189. Barry Simon, Brownian motion, 𝐿^{𝑝} properties of Schrödinger operators and the localization of binding, J. Funct. Anal. 35 (1980), no. 2, 215–229. MR 561987, https://doi.org/10.1016/0022-1236(80)90006-3
  • 190. Barry Simon, Spectrum and continuum eigenfunctions of Schrödinger operators, J. Funct. Anal. 42 (1981), no. 3, 347–355. MR 626449, https://doi.org/10.1016/0022-1236(81)90094-X
  • 191. Barry Simon, Large time behavior of the 𝐿^{𝑝} norm of Schrödinger semigroups, J. Funct. Anal. 40 (1981), no. 1, 66–83. MR 607592, https://doi.org/10.1016/0022-1236(81)90073-2
  • 192. Barry Simon, Almost periodic Schrödinger operators: a review, Adv. in Appl. Math. 3 (1982), no. 4, 463–490. MR 682631, https://doi.org/10.1016/S0196-8858(82)80018-3
  • 193. B. Simon, The P(ф)2 Euclidean (quantum) field theory, Princeton Univ. Press, Princeton, N.J., 1974. MR 489552
  • 194. Barry Simon, Functional integration and quantum physics, Pure and Applied Mathematics, vol. 86, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1979. MR 544188
  • 195. Barry Simon, Trace ideals and their applications, London Mathematical Society Lecture Note Series, vol. 35, Cambridge University Press, Cambridge-New York, 1979. MR 541149
  • 196. B. Simon and R. Hoegh-Krohn, Hypercontractive semigroups and two dimensional self-coupled Bose fields, J. Funct. Anal. 9 (1972), 121-180. MR 293451
  • 197. E. Slaggie and E. Wichmann, Asymptotic properties of the wave functions for a bound non-relativistic system, J. Math. Phys. 3 (1962), 946-968. MR 152277
  • 198. I. M. Slivnyak, Spectrum of the Schrödinger operator with a random potential, Z. Vyčisl. Mat. i Mat. Fiz. 6 (1966), 1104-1108. (Russian) MR 208429
  • 199. G. Stampacchia, Le problem de Dirichlet par les equations elliptiques du second order á coefficients discontinue, Ann. Inst. Fourier (Grenoble) 15 (1969), 189-258. MR 192177
  • 200. F. Stummel, Singulare elliptische differentialoperatoren in Hilbertschen Räumen, Math. Ann. 132 (1956), 150-176. MR 87002
  • 201. Walter Thirring, A course in mathematical physics. Vol. 4, Springer-Verlag, New York-Vienna, 1983. Quantum mechanics of large systems; Translated from the German by Evans M. Harrell. MR 681697
  • 202. F. Trèves, Topological vector spaces, distributions and kernels, Academic Press, New York, 1967. MR 225131
  • 203. N. Trudinger, Linear elliptic operators with measurable coefficients, Ann. Scuola Norm. Sup. Pisa Sci. Fis. Mat. 27 (1973), 255-308. MR 369884
  • 204. G. Velo and A. S. Wightman (eds.), Constructive quantum field theory, Springer-Verlag, Berlin and New York, 1973. MR 395513
  • 205. Fred B. Weissler, Logarithmic Sobolev inequalities and hypercontractive estimates on the circle, J. Funct. Anal. 37 (1980), no. 2, 218–234. MR 578933, https://doi.org/10.1016/0022-1236(80)90042-7
  • 206. Calvin H. Wilcox, Theory of Bloch waves, J. Analyse Math. 33 (1978), 146–167. MR 516045, https://doi.org/10.1007/BF02790171
  • 207. Steven Zelditch, Reconstruction of singularities for solutions of Schrödinger’s equation, Comm. Math. Phys. 90 (1983), no. 1, 1–26. MR 714610

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1980): 81-02, 35-02, 47F05, 35P05

Retrieve articles in all journals with MSC (1980): 81-02, 35-02, 47F05, 35P05


Additional Information

DOI: https://doi.org/10.1090/S0273-0979-1982-15041-8

American Mathematical Society