Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Elementary methods in the study of the distribution of prime numbers


Author: Harold G. Diamond
Journal: Bull. Amer. Math. Soc. 7 (1982), 553-589
MSC (1980): Primary 10H15, 10A25
DOI: https://doi.org/10.1090/S0273-0979-1982-15057-1
MathSciNet review: 670132
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [Ami] S. A. Amitsur, [1] On arithmetic functions, J. Anal. Math. 5 (1956/57), 273-314. MR 105396
  • [Ami] S. A. Amitsur, [2] Arithmetic linear transformations and abstract prime number theorems, Canadian J. Math. 13 (1961), 83-109; Corrigendum, ibid. 21 (1969), 1-5. MR 124302
  • Emiliano Aparicio Bernardo, Methods for the approximate calculation of the minimum uniform Diophantine deviation from zero on a segment, Rev. Mat. Hisp.-Amer. (4) 38 (1978), no. 6, 259–270 (Spanish). MR 531469
  • [Axe] A. Axer, Über einige Grenzwertsätze, Sitzber. Akad. Wiss. Wien, Math.-nat. Kl. 120 (1911), Abt. Ha, 1253-1298.
  • [Ayo] R. Ayoub, [1] On Selberg's lemma for algebraic fields, Canad. J. Math. 7 (1955), 138-143. MR 65586
  • [Ayo] R. Ayoub, [2] Euler and the zeta function, Amer. Math. Monthly 81 (1974), 1067-1086. MR 360116
  • [Ban] Th. Bang, An inequality for real functions of a real variable and its application to the prime number theorem, Proc. Conf. (Oberwolfach, 1963), Birkhauser, Basel, 1964, pp. 155-160. MR 182615
  • [Ber] J. Bertrand, Mémoire sur le nombre de valeurs que peut prendre une fonction quand on y permute les lettres qu'elle renferme, J. École Roy. Poly. 18 (1845), 123-140.
  • [Bon] H. Bohr, Address of Professor Harald Bohr, Proc. Internat. Congr. Math. (Cambridge, 1950) vol. 1, Amer. Math. Soc., Providence, R.I., 1952, pp. 127-134. MR 45238
  • [Bom] E. Bombieri, [1] Sulle formule di A. Selberg generalizzate per classi di funzioni aritmetiche e le applicazioni al problema del resto nel "Primzahlsatz", Riv. Math. Univ. Parma (2) 3 (1962), 393-440. MR 154860
  • [Bom] E. Bombieri, [2] On the large sieve, Mathematika 12 (1965), 201-225. MR 197425
  • [Bom] E. Bombieri, [3] Le grand crible dans la théorie analytique des nombres, Astérisque No. 18, Soc. Math, de France, Paris, 1974. MR 371840
  • [Bre] R. Breusch, [1] Another proof of the prime number theorem, Duke Math. J. 21 (1954), 49-53. MR 68567
  • [Bre] R. Breusch, [2] An elementary proof of the prime number theorem with remainder term, Pacific J. Math. 10 (1960), 487-497. MR 113854
  • [Bru] V. Brun, [1] La série $ \frac 15 + \frac 17 + \frac {1}{11} + \frac {1}{13} + \frac {1}{17} + \frac {1}{19} + \frac {1}{29} + \frac {1}{31} + \frac {1}{41} + \frac {1}{43} + \frac {1}{59} + \frac {1}{61} +\cdots$ où les dénominateurs sont ``nombres premiers jumeaux'' est convergente ou finie, Bull. Sci. Math. (2) 43 (1919), 100-104 and 124-128.
  • [Bru] V. Brun, [2] Le crible d'Eratosthène et le théorème de Goldbach, Vid. Sel. Skr. mat. naturw. I, No. 3 (1920).
  • [Buc] A. A. Buchstab, [1] Asymptotic estimates of a general number theoretic function, Mat. Sb. (N.S.) 2 (44) (1937), 1239-1246. (Russian)
  • [Buc] A. A. Buchstab, [2] Combinatorial strengthening of the sieve of Eratosthenes method, Uspehi Mat. Nauk 22 (1967), 199-226 (Russian); English transl. Russian Math. Surveys 22 (1967), 205-233. MR 218326
  • [Bur] D. A. Burgess, On character sums and L series. II, Proc. London Math. Soc. 12 (1962), 193-206. MR 132733
  • [Cha] K. Chandrasekharan, [1] Introduction to analytic number theory, Die Grundlehren der Math. Wiss., Bd. 148, Springer, New York, 1968. MR 249348
  • [Cha] K. Chandrasekharan, [2] Arithmetic functions, Die Grundlehrender Math. Wiss., Bd. 167, Springer, New York, 1970. MR 277490
  • [Chb] P. L. Chebyshev, Mémoire sur les nombres premiers, J. de Math. Pures Appl. (1) 17 (1852), 366-390. Also in Mémoires présentés à l'Académie Impériale des sciences de St.-Pétersbourg par divers savants 7 (1854), 15-33. Also in Oeuvres 1 (1899), 49-70.
  • [Chn] J. R. Chen, On the representation of a large even integer as the sum of a prime and the product of at most two primes, Sci. Sinica 16 (1973), 157-176. MR 434997
  • [Coh] L. W. Cohen, The annual meeting of the society, Bull. Amer. Math. Soc. 58 (1952), 159-160.
  • [Crp] J. G. van der Corput, [1] Démonstration élémentaire du théorème sur la distribution des nombres premiers, Scriptum No. 1, Math. Centrum, Amsterdam, 1948. MR 29412
  • [Crp] J. G. van der Corput, [2] Sur la reste dans la démonstration élémentaire du théorème des nombres premiers, Colloq. sur la Théorie des Nombres (Bruxelles, 1955), Thone, Liège, 1956, 163-182.
  • [Crd] K. Corrádi, A remark on the theory of multiplicative functions, Acta Sci. Math. (Szeged) 28 (1967), 83-92. MR 211964
  • Harold Davenport, Multiplicative number theory, 2nd ed., Graduate Texts in Mathematics, vol. 74, Springer-Verlag, New York-Berlin, 1980. Revised by Hugh L. Montgomery. MR 606931
  • [Dia] H. Diamond, [1] Changes of sign of π(x) - li(x), L'Enseignement Mathématique 21 (1975), 1-14.
  • [Dia] H. Diamond, [2] Chebyshev type estimates in prime number theory, Sem. Théorie des Nombres, Univ. de Bordeaux I, Exp. No. 24, 1973-74, 11 pp. MR 392877
  • Harold G. Diamond and Paul Erdős, On sharp elementary prime number estimates, Enseign. Math. (2) 26 (1980), no. 3-4, 313–321 (1981). MR 610529
  • Harold G. Diamond and Kevin S. McCurley, Constructive elementary estimates for 𝑀(𝑥), Analytic number theory (Philadelphia, PA, 1980) Lecture Notes in Math., vol. 899, Springer, Berlin-New York, 1981, pp. 239–253. MR 654531
  • [DS] H. Diamond and J. Steinig, An elementary proof of the prime number theorem with a remainder term, Invent. Math. 11 (1970), 199-258. MR 280449
  • [Dic] L. E. Dickson, History of the theory of numbers, Carnegie Inst., Washington, D.C., 1919; reprinted by Chelsea, New York, 1966.
  • [Dir] G. Lejeune Dirichlet, Über die Bestimmung der mittleren Werte in der Zahlentheorie, Abh. Akad. Wiss. Berlin, 1849; 1851, 69-83. Also in Werke, vol. 2, 1897, 49-66.
  • [Eda] Y. Eda, On the prime number theorem, Sci. Rep. Kanazawa Univ. 2 (1953), 23-33. MR 74451
  • [Edw] H. M. Edwards, Riemann's zeta function, Academic Press, New York, 1974. MR 466039
  • [EMF] W. J. Ellison (in collaboration with M. Mendès-France), Les nombres premiers, Publ. Inst. Math. Univ. Nancago, No. IX, Hermann, Paris, 1975. MR 417077
  • [Erd] P. Erdös, [1] On a new method in elementary number theory which leads to an elementary proof of the prime number theorem, Proc. Nat. Acad. Sci. U.S.A. 35 (1949), 374-384. MR 29411
  • [Erd] P. Erdös, [2] On the distribution of numbers of the form σ(n)/n and on some related questions, Pacific J. Math. 52 (1974), 59-65. MR 354601
  • [Erd] P. Erdös, [3] Personal communication.
  • [Euc] Euclid, Elements, vol. 2, IX, 20 (T. Heath, ed.), Dover, New York, 1956. MR 75873
  • [Eul] L. Euler, Varias observationes circa series infinitas, Comment. Acad. Sci. Imp. Petro-politanae 9 (1737; 1744), 160-188. Also in Opera omnia (1) 14, 216-244.
  • [Fog] È. Fogels, On an elementary proof of the prime number theorem, Latvijas PSR Zin. Akad. Fiz. Mat. Inst. Raksti 2 (1950), 14-45. (Russian) MR 47076
  • [FS] W. Forman and H. N. Shapiro, Abstract prime number theorems, Comm. Pure Appl. Math. 7 (1954), 587-619. MR 63396
  • [Gau] C. F. Gauss, Letter to Encke, 24 Dec. 1849, Werke, vol. 2, Kng. Ges. Wiss., Göttingen, 1863, pp. 444-447.
  • [Gel] A. O. Gelfond, [1] On the arithmetic equivalent of analyticity of the Dirichlet L-series on the line Re s = 1, Izv. Akad. Nauk SSSR Ser. Mat. 20 (1956), 145-166 (Russian); English transl. Amer. Math. Soc. Transl. (2) 19 (1962), 87-108. MR 113850
  • [Gel] A. O. Gelfond, [2] Commentary on the papers "On the estimation of the number of primes not exceeding a given value" and "On prime numbers", Collected Works of P. L. Chebyshev, vol. 1, Akad. Nauk SSSR, Moscow-Leningrad, 1946, pp. 285-288. (Russian)
  • [GL] A. O. Gelfond and Ju. V. Linnik, Elementary methods in the analytic theory of numbers, Fizmatgiz, Moscow, 1962 (Russian); English transl. (L. J. Mordell, ed.), Rand McNally, Chicago, 1965. Also (I. Snedden, ed.), M.I.T., Cambridge, Mass., 1966. MR 201368
  • [Gio] A. Gioia, The theory of numbers. An introduction, Markham, Chicago, 1970. MR 258720
  • [Had] J. Hadamard, [1] Étude sur les propriétés des fonctions entières et en particulier d'une fonction considérée par Riemann, J. de Math. Pures Appl. (4) 9 (1893), 171-215; reprinted in Oeuvres de Jacques Hadamard, C.N.R.S., Paris, 1968, vol. 1, pp. 103-147.
  • J. Hadamard, Sur la distribution des zéros de la fonction 𝜁(𝑠) et ses conséquences arithmétiques, Bull. Soc. Math. France 24 (1896), 199–220 (French). MR 1504264
  • [Hls] G. Halász, Über die Mittelwerte multiplikativer zahlentheoretischer Funktionen, Acta Math. Acad. Sci. Hungar. 19 (1968), 365-403. MR 230694
  • [HaRi] H. Halberstam and H.-E. Richert, Sieve methods, Academic Press, London, 1974. MR 424730
  • [HaRo] H. Halberstam and K. Roth, Sequences, Oxford, London, 1966.
  • [Har] G. H. Hardy, Prime numbers, Brit. Assn. Rep., 1915, pp. 350-354; also in Collected papers, vol. 2, Oxford Univ. Press, London, 1967, pp. 14-18.
  • G. H. Hardy and J. E. Littlewood, Some problems of ‘Partitio numerorum’; III: On the expression of a number as a sum of primes, Acta Math. 44 (1923), no. 1, 1–70. MR 1555183, https://doi.org/10.1007/BF02403921
  • [HW] G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, 5th ed., Oxford, London, 1979. MR 67125
  • [HeRi] D. Hensley and I. Richards, [I] On the incompatibility of two conjectures concerning primes, Analytic Number Theory, Proc. Sympos. Pure Math., vol. 24, Amer. Math. Soc., Providence, R.I., 1973, pp. 123-127. MR 340194
  • [HeRi] D. Hensley and I. Richards, [2] Primes in intervals, Acta Arith. 25 (1974), 375-391. MR 396440
  • [Ing] A. E. Ingham, [1] The distribution of prime numbers, Cambridge Tracts in Math., No. 30, Cambridge, 1932; reprinted by Hafner, New York, 1971. MR 184920
  • [Ing] A. E. Ingham, [2] Note on the distribution of primes, Acta Arith. 1 (1936), 201-211.
  • [Ing] A. E. Ingham, [3] Review of Selberg and Erdös elementary proofs of P.N.T., Math. Reviews 10 (1949), 595-596; Reprinted in Reviews in Number Theory (W. J. LeVeque, ed.), vol. 4, N 20-3, Amer. Math. Soc., Providence, R.I., 1974.
  • Henryk Iwaniec, Rosser’s sieve, Acta Arith. 36 (1980), no. 2, 171–202. MR 581917, https://doi.org/10.4064/aa-36-2-171-202
  • [Jur] W. B. Jurkat, Abstracts of short communications, Proc. Internat. Congr. Math. (Stockholm, 1962), Inst. Mittag-Leffler, Djursholm, Sweden, 1963, p. 35.
  • [Kuh] P. Kuhn, Eine Verbesserung des Restglieds beim elementaren Beweis des Primzahlsatzes, Math. Scand. 3 (1955), 75-89. MR 74449
  • [laV] C. J. de la Vallée Poussin, [1] Recherches analytiques sur la théorie des nombres premiers, Ann. Soc. Sci. Bruxelles 20 (1896), 183-256.
  • [laV] C. J. de la Vallée Poussin, [2] Sur la fonction ζ (s) de Riemann et le nombre des nombres premiers inférieurs à une limite donnée, Memoires Couronnés de l'Acad. Roy des Sciences, Belgique 59 (1899-1900); reprinted in Colloque sur la Théorie des Nombres (Bruxelles, 1955), Thone, Liège, 1956, pp. 9-66.
  • [Lnd] E. Landau, [1] Handbuch der Lehre von der Verteilung der Primzahlen, Teubner, Leipzig, 1909; reprinted (with an appendix by P. T. Bateman), Chelsea, New York, 1953. MR 68565
  • [Lnd] E. Landau, [2] Über einige neuere Grenzwertsätze, Rend. Cire. Mat. Palermo 34 (1912), 121-131.
  • [Lnd] E. Landau, [3] Vorlesungen über Zahlentheorie, Hirzel, Leipzig, 1927; reprinted by Chelsea, New York, 1947.
  • [Lnd] E. Landau, [4] Über den Wienerschen neuen Weg zum Primzahlsatz, Sitzber. Preuss. Akad. Wiss., 1932, pp. 514-521; reprinted in Handbuch, 1953, pp. 917-924.
  • [Lng] M. Langevin, Méthodes élémentaires en vue du théorème de Sylvester (Sem. Delange-Pisot-Poitou, 17e année, 1975/76), Théorie des nombres: Fasc. 2, Exp. No. G2, Secrétariat Math., Paris, 1977. MR 450215
  • [LS] A. F. Lavrik and A. Š. Sobirov, On the remainder term in the elementary proof of the prime number theorem, Dokl. Akad. Nauk SSSR 211 (1973), 534-536 (Russian); English transl. Soviet Math. Dokl. 14 (1973), 1063-1066. MR 323736
  • [Leg] A.-M. Legendre, Essai sur la théorie des Nombres, Duprat, Paris, 1798.
  • [Leh] R. S. Lehman, On the difference π(x) - 1i(x), Acta Arith. 11 (1966), 397-410.
  • [LF] B. V. Levin and A. S. Feinleib, Applications of certain integral equations to questions of the theory of numbers, Uspehi Mat. Nauk 22 (1967), no. 3 (135), 119-197 (Russian); English transl., Russian Math. Surveys 22 (1967), 119-204. MR 229600
  • [Lev] N. Levinson, A motivated account of an elementary proof of the prime number theorem, Amer. Math. Monthly 76 (1969), 225-245. MR 241372
  • [Lit] J. E. Littlewood, Sur la distribution des nombres premiers, C. R. Acad. Sci. Paris 158 (1914), 1869-1872.
  • [Man] H. von Mangoldt, [1] Zu Riemanns Abhandlung "Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse", J. Reine Angew. Math. 114 (1895), 255-305.
  • H. v. Mangoldt, Zur Verteilung der Nullstellen der Riemannschen Funktion 𝛾(𝑡), Math. Ann. 60 (1905), no. 1, 1–19 (German). MR 1511287, https://doi.org/10.1007/BF01447494
  • [Mat] G. B. Mathews, Theory of numbers. I, Deighton Bell, Cambridge, England, 1892; reprinted by Stechert, New York, 1927.
  • Meissel, Ueber die Bestimmung der Primzahlenmenge innerhalb gegebener Grenzen, Math. Ann. 2 (1870), no. 4, 636–642 (German). MR 1509683, https://doi.org/10.1007/BF01444045
  • [Mer] F. Mertens, Ein Beitrag zur analytischen Zahlentheorie, J. Reine Angew. Math. 78 (1874), 46-62.
  • [Mon] H. L. Montgomery, Topics in multiplicative number theory, Lecture Notes in Math., vol. 227, Springer-Verlag, Berlin and New York, 1971. MR 337847
  • [Nag] T. Nagell, Introduction to number theory, Wiley, New York, 1951. MR 43111
  • M. Nair, On Chebyshev-type inequalities for primes, Amer. Math. Monthly 89 (1982), no. 2, 126–129. MR 643279, https://doi.org/10.2307/2320934
  • [Nev] V. Nevanlinna, Über die elementaren Beweise der Primzahlsätze und deren äquivalente Fassungen, Ann. Acad. Sci. Fenn. Sér. AI, No. 343, 1964. MR 168539
  • [Pin] J. Pintz, Elementary methods in the theory of L-functions. I-VIII, Acta Arith. 31 (1976), 53-60; 31 (1976), 273-289; 31 (1976), 295-306; 31 (1976), 419-429; 32 (1977), 163-171; 32 (1977), 173-178; 32 (1977), 397-406; Corrigendum 33 (1977), 293-295; 33 (1977), 89-98.
  • [Pit] H. R. Pitt, Tauberian theorems, Oxford, London, 1958. MR 106376
  • [Pol] G. Pólya, Heuristic reasoning in the theory of numbers, Amer. Math. Monthly 66 (1959), 375-384. MR 104639
  • [Pop] J. Popken, On convolutions in number theory, Indag. Math. 17 (1955), 10-15. MR 68574
  • [PR] A. G. Postnikov and N. P. Romanov, A simplification of Selberg's elementary proof of the asymptotic law of distribution of primes, Uspehi. Mat. Nauk 10 4 (66), (1955), 75-87 (Russian); Corrigendum, ibid. 24, no. 5 (149), (1969), 263. MR 74450
  • [Pra] K. Prachar, Primzahlverteilung, Die Grundlehren der Math. Wiss., Bd. 91, Springer, Berlin, 1957. MR 87685
  • [Rie] H.-E. Richert, Lectures on sieve methods, Tata Inst., Bombay, 1976.
  • [Rie] B. Riemann, Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse, Monatsber. Kgl. Preuss. Akad. Wiss. Berlin, 1860, pp. 671-680; also in Werke, 2nd ed., Teubner, Leipzig, 1892, pp. 145-155. Reprinted by Dover, New York, 1953.
  • [Ros] P. M. Ross, On Chen's theorem that each large even integer has the form p, J. London Math. Soc. (2) 10 (1975), 500-506. MR 389816
  • [RS] J. B. Rosser and L. Schoenfeld, [1] Approximate formulas for some functions of prime numbers, Illinois J. Math. 6 (1962), 64-94. MR 137689
  • [RS] J. B. Rosser and L. Schoenfeld, [2] Sharper bounds for the Chebyshev functions $\theta (x)$ and $\psi (x)$, Math. Comp. 29 (1975), 243-269. MR 457373
  • [RS] J. B. Rosser and L. Schoenfeld, [3] Sharper bounds for the Chebyshev functions $\theta (x)$ and $\psi (x)$. II, Math. Comp. 30 (1976), 337-360; Corrigendum, ibid. 30 (1976), 900. MR 457374
  • [Sch] W. Schwarz, Einführung in Methoden und Ergebnisse der Primzahltheorie, Bibliogr. Inst. 278/278a, Mannheim, 1969. MR 263750
  • [Seg] S. L. Segal, Prime number theorem analogues without primes, J. Reine Angew. Math. 265 (1974), 1-22. MR 349604
  • [Sel] A. Selberg, [1] An elementary proof of the prime number theorem, Ann. of Math. (2) 50 (1949), 305-313. MR 29410
  • [Sel] A. Selberg, [2] An elementary proof of the prime number theorem for arithmetic progressions, Canad. J. Math. 2 (1950), 66-78. MR 33306
  • [Sel] A. Selberg, [3] On elementary methods in prime number theory and their limitations, Den 11te Skand. Mat. Kongress (Trondheim, 1949), Tanums Forlag, Oslo, 1952, pp. 13-22. MR 53147
  • [Sha] H. N. Shapiro, [1] On a theorem of Selberg and generalizations, Ann. of Math. (2) 51 (1950), 485-497. MR 33308
  • [Sha] H. N. Shapiro, [2] On primes in arithmetic progression. II, Ann. of Math. (2) 52 (1952), 231-243. MR 36262
  • [Sok] A. V. Sokolovski, Letter to H. Diamond and J. Steinig, 17 February, 1973.
  • [Spe] W. Specht, Elementare Beweise der Primzahlsätze, Hochschulbücher, Bd. 30, VEB Deutcher Verlag Wiss., Berlin, 1956. MR 86829
  • J. J. Sylvester, On Tchebycheff’s Theory of the Totality of the Prime Numbers Comprised within Given Limits, Amer. J. Math. 4 (1881), no. 1-4, 230–247. MR 1505291, https://doi.org/10.2307/2369154
  • [Syl] J. J. Sylvester, [2] On arithmetical series, Messenger of Math. (2) 21 (1892), 1-19 and 87-120.
  • [TI] T. Tatuzawa and K. Iseki, On Selberg's elementary proof of the prime number theorem, Proc. Japan Acad. 27 (1951), 340-342. MR 46382
  • [Tit] E. C. Titchmarsh, The theory of the Riemann zeta function, Oxford, London, 1951. MR 46485
  • [ViA] A. I. Vinogradov, The density hypothesis for Dirichlet L series, Izv. Akad. Nauk SSSR Ser. Mat. 29 (1965), 903-934. (Russian) MR 197414
  • I. M. Vinogradov, The method of trigonometrical sums in the theory of numbers, Dover Publications, Inc., Mineola, NY, 2004. Translated from the Russian, revised and annotated by K. F. Roth and Anne Davenport; Reprint of the 1954 translation. MR 2104806
  • [Wal] A. Walfisz, Weylsche Exponentialsummen in der neueren Zahlentheorie, Math. For-schungsber. XV, VEB Deutscher Verlag Wiss., Berlin, 1963. MR 220685
  • [Wid] D. V. Widder, The Laplace transform, Princeton Univ. Press, Princeton, N.J.. 1941. MR 5923
  • [Wie] N. Wiener, [1] A new method in Tauberian theorems, J. Math. Phys. M.I.T. 7 (1927-28), 161-184.
  • Norbert Wiener, Tauberian theorems, Ann. of Math. (2) 33 (1932), no. 1, 1–100. MR 1503035, https://doi.org/10.2307/1968102
  • [WG] N. Wiener and L. Geller, Some prime number consequences of the Ikehara theorem, Acta Sci. Math. Szeged 12B (1950), 25-28. MR 34801
  • [Win] A. Wintner, The theory of measure in arithmetical semigroups, Waverly Press, Baltimore, 1944.
  • [Wir] E. Wirsing, [1] Elementare Beweise des Primzahlsatzes mit Restglied. I, J. Reine Angew. Math. 211 (1962), 205-214. MR 150116
  • [Wir] E. Wirsing, [2] Elementare Beweise des Primzahlsatzes mit Restglied. II, J. Reine Angew. Math. 214/215 (1963), 1-18. MR 166180
  • [Wir] E. Wirsing, [3] Des asymptotische Verhalten von Summen über multipikative Funktionen. II, Acta Math. Acad. Sci. Hungar. 18 (1967), 411-467. MR 223318
  • [Wri] E. M. Wright, The elementary proof of the prime number theorem, Proc. Roy. Soc. Edinburgh. A 63 (1952), 257-267. MR 49218
  • [Zag] D. Zagier, Die ersten 50 Millionen Primzahlen, Elemente der Math., Beihefte No. 15, Birkhäuser, Basel, 1977; English transl., Math. Intelligencer 0 (1977), 7-19. MR 480292

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1980): 10H15, 10A25

Retrieve articles in all journals with MSC (1980): 10H15, 10A25


Additional Information

DOI: https://doi.org/10.1090/S0273-0979-1982-15057-1

American Mathematical Society