Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 

 

Strictly pseudoconvex domains in $C^n$


Authors: Michael Beals, Charles Fefferman and Robert Grossman
Journal: Bull. Amer. Math. Soc. 8 (1983), 125-322
MSC (1980): Primary 32F15
DOI: https://doi.org/10.1090/S0273-0979-1983-15087-5
MathSciNet review: 684898
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. V. Arnold, Les méthodes mathématiques de la mécanique classique, Éditions Mir, Moscow, 1976 (French). Traduit du russe par Djilali Embarek. MR 0474391
    V. I. Arnol′d, Mathematical methods of classical mechanics, Springer-Verlag, New York-Heidelberg, 1978. Translated from the Russian by K. Vogtmann and A. Weinstein; Graduate Texts in Mathematics, 60. MR 0690288
  • 2. Steve Bell and Ewa Ligocka, A simplification and extension of Fefferman’s theorem on biholomorphic mappings, Invent. Math. 57 (1980), no. 3, 283–289. MR 568937, https://doi.org/10.1007/BF01418930
  • 3. Marcel Berger, Paul Gauduchon, and Edmond Mazet, Le spectre d’une variété riemannienne, Lecture Notes in Mathematics, Vol. 194, Springer-Verlag, Berlin-New York, 1971 (French). MR 0282313
  • 4. L. Boutet de Monvel, Intégration des équations de Cauchy-Riemann induites formelles, Séminaire Goulaouic-Lions-Schwartz 1974–1975; Équations aux derivées partielles linéaires et non linéaires, Centre Math., École Polytech., Paris, 1975, pp. Exp. No. 9, 14 (French). MR 0409893
  • 5. L. Boutet de Monvel and J. Sjöstrand, Sur la singularité des noyaux de Bergman et de Szegő, Journées: Équations aux Dérivées Partielles de Rennes (1975), Soc. Math. France, Paris, 1976, pp. 123–164. Astérisque, No. 34-35 (French). MR 0590106
  • 6. L. Boutet de Monvel, Opérateurs à coefficients polynomiaux, espace de Bargmann, et opérateurs de Toeplitz, Goulaouic-Meyer-Schwartz Seminar, 1980–1981, École Polytech., Palaiseau, 1981, pp. Exp. No. II bis, 6 (French). MR 657971
  • 7. D. Burns and S. Schneider, personal communication.
  • 8. E. Cartan, Sur la géométrie pseudo-conforme des hypersurfaces de deux variables complexes. I, II, Oeuvres II, 2, 1231-1304; Oeuvres III, 2, 1217-1238.
  • 9. D. Catlin, Necessary conditions for subellipticity and hypoellipticity for the ∂-Neumann problem on pseudoconvex domains, in [26].
  • 10. Shiu Yuen Cheng and Shing Tung Yau, On the regularity of the Monge-Ampère equation 𝑑𝑒𝑡(∂²𝑢/∂𝑥ᵢ∂𝑠𝑥ⱼ)=𝐹(𝑥,𝑢), Comm. Pure Appl. Math. 30 (1977), no. 1, 41–68. MR 0437805, https://doi.org/10.1002/cpa.3160300104
  • 11. S. S. Chern and J. K. Moser, Real hypersurfaces in complex manifolds, Acta Math. 133 (1974), 219–271. MR 0425155, https://doi.org/10.1007/BF02392146
  • 12. Vladimir Grigor′evich Boltyanskii and Izrail′ Tsudikovich Gohberg, The decomposition of figures into smaller parts, University of Chicago Press, Chicago, Ill.-London, 1980. Translated from the Russian by Henry Christoffers and Thomas P. Branson; Popular Lectures in Mathematics. MR 563920
  • 13. John P. D’Angelo, Orders of contact of real and complex subvarieties, Illinois J. Math. 26 (1982), no. 1, 41–51. MR 638553
    John P. D’Angelo, Perturbations of analytic varieties, Recent developments in several complex variables (Proc. Conf., Princeton Univ., Princeton, N. J., 1979) Ann. of Math. Stud., vol. 100, Princeton Univ. Press, Princeton, N.J., 1981, pp. 127–132. MR 627753
  • 14. K. Diederich and P. Pflug, Necessary conditions for hypoellipticity of the $\bar \partial $-problem, in [26 ].
  • 15. J. J. Duistermaat and V. W. Guillemin, The spectrum of positive elliptic operators and periodic bicharacteristics, Invent. Math. 29 (1975), no. 1, 39–79. MR 0405514, https://doi.org/10.1007/BF01405172
  • 16. Michael Hitrik, Lagrangian tori and spectra for non-selfadjoint operators, Séminaire: Équations aux Dérivées Partielles. 2005–2006, Sémin. Équ. Dériv. Partielles, École Polytech., Palaiseau, 2006, pp. Exp. No. XXIV, 16. Based on joint works with J. Sjöstrand and S. Vũ Ngọc. MR 2276088
  • 17. Ju. V. Egorov, Subelliptic pseudodifferential operators, Dokl. Akad. Nauk SSSR 188 (1969), 20–22 (Russian). MR 0255970
  • 18. Ju. V. Egorov, The canonical transformations of pseudodifferential operators, Uspehi Mat. Nauk 24 (1969), no. 5 (149), 235–236 (Russian). MR 0265748
  • 19. Ju. V. Egorov, Subelliptic operators, Uspehi Mat. Nauk 30 (1975), no. 2(182), 57–114 (Russian). MR 0410473
  • 20. Ju. V. Egorov, Subelliptic operators, Uspehi Mat. Nauk 30 (1975), no. 3(183), 57–104 (Russian). MR 0410474
  • 21. Charles Fefferman, The Bergman kernel and biholomorphic mappings of pseudoconvex domains, Invent. Math. 26 (1974), 1–65. MR 0350069, https://doi.org/10.1007/BF01406845
  • 22. Charles L. Fefferman, Monge-Ampère equations, the Bergman kernel, and geometry of pseudoconvex domains, Ann. of Math. (2) 103 (1976), no. 2, 395–416. MR 0407320, https://doi.org/10.2307/1970945
    C. Fefferman, Correction to: “Monge-Ampère equations, the Bergman kernel, and geometry of pseudoconvex domains” (Ann. of Math. (2) 103 (1976), no. 2, 395–416), Ann. of Math. (2) 104 (1976), no. 2, 393–394. MR 0407321, https://doi.org/10.2307/1970961
  • 23. Charles Fefferman, Parabolic invariant theory in complex analysis, Adv. in Math. 31 (1979), no. 2, 131–262. MR 526424, https://doi.org/10.1016/0001-8708(79)90025-2
  • 24. G. B. Folland and J. J. Kohn, The Neumann problem for the Cauchy-Riemann complex, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1972. Annals of Mathematics Studies, No. 75. MR 0461588
  • 25. G. B. Folland and E. M. Stein, Estimates for the ∂_{𝑏} complex and analysis on the Heisenberg group, Comm. Pure Appl. Math. 27 (1974), 429–522. MR 0367477, https://doi.org/10.1002/cpa.3160270403
  • 26. Recent developments in several complex variables, Annals of Mathematics Studies, vol. 100, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1981. Edited by John E. Fornaess. MR 627746
  • 27. Peter B. Gilkey, The index theorem and the heat equation, Publish or Perish, Inc., Boston, Mass., 1974. Notes by Jon Sacks; Mathematics Lecture Series, No. 4. MR 0458504
  • 28. Herbert Goldstein, Classical Mechanics, Addison-Wesley Press, Inc., Cambridge, Mass., 1951. MR 0043608
  • 29. R. Graham, to appear.
  • 30. V. Guillemin, Some classical theorems in spectral theory revisited, in [35].
  • 31. G. Hochschild and G. D. Mostow, Unipotent groups in invariant theory, Proc. Nat. Acad. Sci. U.S.A. 70 (1973), 646–648. MR 0320174
  • 32. Lars Hörmander, Hypoelliptic second order differential equations, Acta Math. 119 (1967), 147–171. MR 0222474, https://doi.org/10.1007/BF02392081
  • 33. Lars Hörmander, The spectral function of an elliptic operator, Acta Math. 121 (1968), 193–218. MR 0609014, https://doi.org/10.1007/BF02391913
  • 34. Lars Hörmander, Fourier integral operators. I, Acta Math. 127 (1971), no. 1-2, 79–183. MR 0388463, https://doi.org/10.1007/BF02392052
  • 35. Lars Hörmander (ed.), Seminar on Singularities of Solutions of Linear Partial Differential Equations, Annals of Mathematics Studies, vol. 91, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1979. Held at the Institute for Advanced Study, Princeton, N.J., 1977/78. MR 547013
  • 36. L. Hörmander, Subelliptic operators, in [35].
  • 37. Norberto Kerzman, The Bergman kernel function. Differentiability at the boundary, Math. Ann. 195 (1972), 149–158. MR 0294694, https://doi.org/10.1007/BF01419622
  • 38. S. Kobayashi and K. Nomizu, Foundations of differential geometry, Wiley, New York, 1969.
  • 39. J. J. Kohn, Harmonic integrals on strongly pseudoconvex manifolds. I, II, Ann. of Math. (2) 78 (1963), 112-148; ibid 79 (1964), 450-472.
  • 40. J. J. Kohn, Subellipticity of the ∂-Neumann problem on pseudo-convex domains: sufficient conditions, Acta Math. 142 (1979), no. 1-2, 79–122. MR 512213, https://doi.org/10.1007/BF02395058
  • 41. Steven G. Krantz, Function theory of several complex variables, John Wiley & Sons, Inc., New York, 1982. Pure and Applied Mathematics; A Wiley-Interscience Publication. MR 635928
  • 42. Masatake Kuranishi, Strongly pseudoconvex CR structures over small balls. I. An a priori estimate, Ann. of Math. (2) 115 (1982), no. 3, 451–500. MR 657236, https://doi.org/10.2307/2007010
    Masatake Kuranishi, Strongly pseudoconvex CR structures over small balls. II. A regularity theorem, Ann. of Math. (2) 116 (1982), no. 1, 1–64. MR 662117, https://doi.org/10.2307/2007047
    Masatake Kuranishi, Strongly pseudoconvex CR structures over small balls. III. An embedding theorem, Ann. of Math. (2) 116 (1982), no. 2, 249–330. MR 672837, https://doi.org/10.2307/2007063
  • 43. Serge Lang, Linear algebra, Second edition, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1971. MR 0277543
  • 44. S. Lee and R. Melrose, personal communication.
  • 45. V. P. Maslov, Theory of perturbations and asymptotic methods, Moskov. Gos. Univ., Moscow, 1965. (Russian)
  • 46. Anders Melin and Johannes Sjöstrand, Fourier integral operators with complex-valued phase functions, Fourier integral operators and partial differential equations (Colloq. Internat., Univ. Nice, Nice, 1974) Springer, Berlin, 1975, pp. 120–223. Lecture Notes in Math., Vol. 459. MR 0431289
  • 47. S. Minakshisundaram and Å. Pleijel, Some properties of the eigenfunctions of the Laplace-operator on Riemannian manifolds, Canadian J. Math. 1 (1949), 242–256. MR 0031145
  • 48. Jürgen Moser, Holomorphic equivalence and normal forms of hypersurfaces, Differential geometry (Proc. Sympos. Pure Math., Vol. XXVII, Part 2, Stanford Univ., Stanford, Calif., 1973) Amer. Math. Soc., Providence, R. I., 1975, pp. 109–112. MR 0435439
  • 49. Alexander Nagel and E. M. Stein, Lectures on pseudodifferential operators: regularity theorems and applications to nonelliptic problems, Mathematical Notes, vol. 24, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1979. MR 549321
  • 50. L. Nirenberg, A certain problem of Hans Lewy, Uspehi Mat. Nauk 29 (1974), no. 2(176), 241–251 (Russian). Translated from the English by Ju. V. Egorov; Collection of articles dedicated to the memory of Ivan Georgievič Petrovskiĭ (1901–1973), I. MR 0492752
  • 51. L. Nirenberg, S. Webster, and P. Yang, Local boundary regularity of holomorphic mappings, Comm. Pure Appl. Math. 33 (1980), no. 3, 305–338. MR 562738, https://doi.org/10.1002/cpa.3160330306
  • 52. V. K. Patodi, Curvature and the eigenforms of the Laplace operator, J. Differential Geometry 5 (1971), 233–249. MR 0292114
  • 53. D. H. Phong, On integral representations for the Neumann operator, Proc. Nat. Acad. Sci. U.S.A. 76 (1979), no. 4, 1554–1558. MR 526179
  • 54. Linda Preiss Rothschild and E. M. Stein, Hypoelliptic differential operators and nilpotent groups, Acta Math. 137 (1976), no. 3-4, 247–320. MR 0436223, https://doi.org/10.1007/BF02392419
  • 55. M. Sato, T. Kawai and M. Kashiwera, Microfunctions and pseudodifferential equations, Lecture Notes in Math., vol. 287, Springer-Verlag, Berlin and New York, 1973.
  • 56. C. S. Seshadri, On a theorem of Weitzenböck in invariant theory, J. Math. Kyoto Univ. 1 (1961/1962), 403–409. MR 0144914
  • 57. Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
  • 58. Noboru Tanaka, On the pseudo-conformal geometry of hypersurfaces of the space of 𝑛 complex variables, J. Math. Soc. Japan 14 (1962), 397–429. MR 0145555, https://doi.org/10.2969/jmsj/01440397
  • 59. Noboru Tanaka, Graded Lie algebras and geometric structures, Proc. U.S.-Japan Seminar in Differential Geometry (Kyoto, 1965) Nippon Hyoronsha, Tokyo, 1966, pp. 147–150. MR 0222802
  • 60. D. S. Tartakoff, A survey of some recent results in C [26].
  • 61. Michael E. Taylor, Pseudodifferential operators, Princeton Mathematical Series, vol. 34, Princeton University Press, Princeton, N.J., 1981. MR 618463
  • 62. François Trèves, Analytic hypo-ellipticity of a class of pseudodifferential operators with double characteristics and applications to the \overline∂-Neumann problem, Comm. Partial Differential Equations 3 (1978), no. 6-7, 475–642. MR 0492802, https://doi.org/10.1080/03605307808820074
  • 63. François Trèves, Introduction to pseudodifferential and Fourier integral operators. Vol. 2, Plenum Press, New York-London, 1980. Fourier integral operators; The University Series in Mathematics. MR 597145
  • 64. S. M. Webster, On the mapping problem for algebraic real hypersurfaces, Invent. Math. 43 (1977), no. 1, 53–68. MR 0463482, https://doi.org/10.1007/BF01390203
  • 65. R. Weizenböck, Über die invarianten von linearen gruppen, Acta Math. 58 (1932), 230-250.
  • 66. R. O. Wells Jr., The Cauchy-Riemann equations and differential geometry, Bull. Amer. Math. Soc. (N.S.) 6 (1982), no. 2, 187–199. MR 640945, https://doi.org/10.1090/S0273-0979-1982-14976-X
  • 67. Hermann Weyl, The classical groups, Princeton Landmarks in Mathematics, Princeton University Press, Princeton, NJ, 1997. Their invariants and representations; Fifteenth printing; Princeton Paperbacks. MR 1488158

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1980): 32F15

Retrieve articles in all journals with MSC (1980): 32F15


Additional Information

DOI: https://doi.org/10.1090/S0273-0979-1983-15087-5