Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 

 

Instantons, double wells and large deviations


Author: Barry Simon
Journal: Bull. Amer. Math. Soc. 8 (1983), 323-326
MSC (1980): Primary 35P15, 81H99; Secondary 60J65
MathSciNet review: 684899
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. S. Agmon, On exponential decay of solutions of second order elliptic equations in unbounded domains, Proc. A. Pleijel Conf.
  • 2. Shmuel Agmon, Lectures on exponential decay of solutions of second-order elliptic equations: bounds on eigenfunctions of 𝑁-body Schrödinger operators, Mathematical Notes, vol. 29, Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo, 1982. MR 745286
  • 3. R. Carmona and B. Simon, Pointwise bounds on eigenfunctions and wave packets in 𝑁-body quantum systems. V. Lower bounds and path integrals, Comm. Math. Phys. 80 (1981), no. 1, 59–98. MR 623152
  • 4. S. Coleman, The uses of instantons, Proc. Internat. School of Physics, Erice, 1977.
  • 5. S. Combes, P. Duclos and R. Seiler, Krein's formula and one dimensional multiple-well, J. Functional Analysis (to appear).
  • 6. E. Gildener and A. Patrascioiu, Pseudoparticle contributions to the energy spectrum of a one dimensional system, Phys. Rev. D16 (1977), 425-443.
  • 7. Evans M. Harrell, On the rate of asymptotic eigenvalue degeneracy, Comm. Math. Phys. 60 (1978), no. 1, 73–95. MR 0486764
  • 8. Evans M. Harrell, Double wells, Comm. Math. Phys. 75 (1980), no. 3, 239–261. MR 581948
  • 9. Martin Pincus, Gaussian processes and Hammerstein integral equations, Trans. Amer. Math. Soc. 134 (1968), 193–214. MR 0231439, 10.1090/S0002-9947-1968-0231439-1
  • 10. M. Schilder, Some asymptotic formulas for Wiener integrals, Trans. Amer. Math. Soc. 125 (1966), 63–85. MR 0201892, 10.1090/S0002-9947-1966-0201892-6
  • 11. Barry Simon, Functional integration and quantum physics, Pure and Applied Mathematics, vol. 86, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1979. MR 544188
  • 12. B. Simon, Semiclassical analysis of low lying eigenvalues. I. Non-degenerate minima: Asymptotic expansions, Ann. Inst. H. Poincaré (to appear).
  • 13. B. Simon, Semiclassical analysis of low lying eigenvalues.II. Tunneling (in preparation).

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1980): 35P15, 81H99, 60J65

Retrieve articles in all journals with MSC (1980): 35P15, 81H99, 60J65


Additional Information

DOI: http://dx.doi.org/10.1090/S0273-0979-1983-15104-2