Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.


Full text of review: PDF   This review is available free of charge.
Book Information:

Authors: Gordon James and Adalbert Kerber
Title: The representation theory of the symmetric group
Additional book information: Encyclopedia of Mathematics and its Applications, vol. 16, Addison-Wesley, Reading, Mass., 1981, xxviii + 510 pp., $44.50.

References [Enhancements On Off] (What's this?)

  • 1. K. Baclawski, Combinatorial algorithms for Young tableaux, Lecture Notes, Univ. of California, San Diego, 1980.
  • 2. H. Boerner, Representations of groups, 2nd ed., North-Holland, Amsterdam, 1967, 1970.
  • 3. R. Brauer, On a conjecture by Nakayama, Trans. Roy. Soc. Canada Sect. III (3) 41 (1947), 11-19. MR 29906
  • 4. R. W. Carter and G. Lusztig, On the modular representations of the general linear and symmetric groups, Math. Z. 136 (1974), 193-242. MR 354887
  • 5. Michael Clausen, Letter place algebras and a characteristic-free approach to the representation theory of the general linear and symmetric groups. I, Adv. in Math. 33 (1979), no. 2, 161–191. MR 544848, https://doi.org/10.1016/S0001-8708(79)80004-3
  • 6. C. W. Curtis and I. Reiner, Representation theory of finite groups and associative algebras, vol. 11, Wiley, New York, London, Sydney, 1962. MR 144979
  • 7. J. Désarménian, J. P. S. Kung and G. -C. Rota, Invariant theory, Young bitableaux and combinatorics, Adv. in Math. 27 (1978), 63-92. MR 485944
  • 8. L. Dornhoff, Group representation theory, Part B, Dekker, New York, 1972. MR 347960
  • 9. P. Doubilet, G.-C. Rota and J. Stein, On the foundation of combinatorial theory IX: Combinatorial methods in invariant theory, Stud. Appl. Math. 79 (1973), 177-179. MR 498650
  • 10. N. Esper, Tables of reduction of symmetrized inner products ('inner plethysms') of ordinary irreducible representations of symmetric groups, Math. Comp. 29 (1975), 1150-1151. MR 387398
  • 11. H. K. Farahat, A. Kerber and M. H. Peel, Modular representation theory of the symmetric groups, Research paper no. 131, The University of Calgary, 1971.
  • 12. H. K. Farahat, W. Müller and M. H. Peel, The modular characters of the symmetric groups, J. Alg. 40 (1976), 354-363. MR 412266
  • 13. Roger H. Farrell, Multivariate calculation, Springer Series in Statistics, Springer-Verlag, New York, 1985. Use of the continuous groups. MR 770934
  • 14. Walter Feit, The representation theory of finite groups, North-Holland Mathematical Library, vol. 25, North-Holland Publishing Co., Amsterdam-New York, 1982. MR 661045
  • 15. H. O. Foulkes, Concomitants of the quintic and sextic up to degree four in the coefficients of the ground form, J. London Math. Soc. 25 (1950), 205-209. MR 37276
  • 16. H. Garnir, Théorie de la représentation lineaire des groupes symétriques, Mem. Soc. Roy. Sci. Liege (4) 10 (1950), no. 2, 5-100. MR 36237
  • 17. James A. Green, Polynomial representations of 𝐺𝐿_{𝑛}, Lecture Notes in Mathematics, vol. 830, Springer-Verlag, Berlin-New York, 1980. MR 606556
  • 18. M. Hamermesh, Group theory and its applications to physical problems, Addison-Wesley, Reading, Mass., 1962. MR 136667
  • 19. G. Higman, Representations of general linear groups and varieties of p-groups, Proc. Internat. Conf. Theory of Groups Canberra, 1965, pp. 167-173.
  • 20. Peter Hoffman, 𝜏-rings and wreath product representations, Lecture Notes in Mathematics, vol. 746, Springer, Berlin, 1979. MR 549031
  • 21. I. M. Isaacs, Character theory of finite groups, Academic Press, New York, San Francisco, London, 1976. MR 460423
  • 22. G. D. James, The representation theory of the symmetric groups, Lecture Notes in Mathematics, vol. 682, Springer, Berlin, 1978. MR 513828
  • 23. A. Kerber, Representations of permutation groups. I, II, Lecture Notes in Math., vols. 240, 495, Springer-Verlag, Berlin and New York, 1971, 1975. MR 325752
  • 24. A. Kerber and M. H. Peel, On the decomposition numbers of symmetric and alternating groups, Mitt. Math. Sem. Univ. Giessen 91 (1971), 45-81. MR 296145
  • 25. D. Knutson, λ-rings and the representation theory of the symmetric group, Lecture Notes in Math., vol. 308, Springer-Verlag, Berlin and New York, 1973. MR 364425
  • 26. W. Ledermann, Introduction to group characters, Cambridge Univ. Press, London, New York, 1977. MR 460424
  • 27. D. E. Littlewood, Polynomial concomitants and invariant matrices, J. London Math. Soc. 11 (1936) 49-55.
  • 28. D. E. Littlewood, Invariant theory, tensors and group characters, Philos. Trans. Roy. Soc. (A) 239 (1944), 305-365. MR 10594
  • 29. D. E. Littlewood, The theory of groups, characters and matrix representations of groups, 2nd ed., Clarendon Press, Oxford, 1950. MR 2127
  • 30. D. E. Littlewood and A. R. Richardson, Group characters and algebra, Philos. Trans. Roy. Soc. London A 233 (1934), 99-142.
  • 31. I. G. Macdonald, Symmetric functions and Hall polynomials, The Clarendon Press, Oxford University Press, New York, 1979. Oxford Mathematical Monographs. MR 553598
  • 32. J. McConnell, Note on multiplication theorems for Schur functions, Combinatoire et réprésentation du Group Symétrique (Actes Table Ronde C. N. R. S., Univ. Louis-Pasteur, Strasbourg, 1976), Lecture Notes in Math., vol. 579, Springer-Verlag, Berlin and New York, 1977, pp. 252-257. MR 466295
  • 33. F. D. Murnaghan, The theory of group representations, The Johns Hopkins Press, 1938.
  • 34. T. Nakayama, On some modular properties of irreducible representations of a symmetric group. II, Japan J. Math. 17 (1940), 411-423. MR 5730
  • 35. M. H. Peel, Modular representations of the symmetric groups, Thesis, University of Sheffield, 1969.
  • 36. M. H. Peel, Hook representations of the symmetric groups, Glasgow Math. J. 12(1971), 136-149. MR 308249
  • 37. M. H. Peel, Modular representations of the symmetric groups, Univ. of Calgary Research Paper No. 292, 1975.
  • 38. M. H. Peel, Specht modules and the symmetric groups, J. Algebra 36 (1975), 88-97. MR 374253
  • 39. B. M. Puttaswamaiah and J. D. Dixon, Modular representations of finite groups, Academic Press, New York, San Francisco, London, 1977. MR 442071
  • 40. G. de B. Robinson, On the Representations of the Symmetric Group, Amer. J. Math. 60 (1938), no. 3, 745–760. MR 1507943, https://doi.org/10.2307/2371609
  • 41. G. de B. Robinson, On a conjecture by Nakayama, Trans. Roy. Soc., Canada Sect. III (3) 41 (1947), 20-25. MR 29907
  • 42. G. de B. Robinson, Representation theory of the symmetric group, Mathematical Expositions No. 12, Univ. of Toronto Press, Toronto, 1961. MR 125885
  • 43. D. E. Rutherford, Substitutional analysis, University Press, Edinburgh, 1948. MR 27272
  • 44. G. Schensted, Longest increasing and decreasing subsequences, Canad. J. Math. 13 (1961). MR 121305
  • 45. Wilhelm Specht, Die irreduziblen Darstellungen der symmetrischen Gruppe, Math. Z. 39 (1935), no. 1, 696–711 (German). MR 1545531, https://doi.org/10.1007/BF01201387
  • 46. Glânffrwd P. Thomas, On Schensted’s construction and the multiplication of Schur functions, Adv. in Math. 30 (1978), no. 1, 8–32. MR 511739, https://doi.org/10.1016/0001-8708(78)90129-9
  • 47. R. M. Thrall, On symmetrized Kronecker powers and the structure of the free Lie ring, Amer. J. Math. 64 (1942), 371-388. MR 6149
  • 48. J. Towber, Two new functors from modules to algebras, J. Algebra 47 (1977), 80-104. MR 469955
  • 49. Jacob Towber, Young symmetry, the flag manifold, and representations of 𝐺𝐿(𝑛), J. Algebra 61 (1979), no. 2, 414–462. MR 559849, https://doi.org/10.1016/0021-8693(79)90289-8
  • 50. Hermann Weyl, The classical groups, Princeton Landmarks in Mathematics, Princeton University Press, Princeton, NJ, 1997. Their invariants and representations; Fifteenth printing; Princeton Paperbacks. MR 1488158
  • 51. A. Young, Collected papers, Mathematical Expositions No. 21, Univ. of Toronto Press, Toronto, 1977. MR 439548
  • 52. Andrey V. Zelevinsky, Representations of finite classical groups, Lecture Notes in Mathematics, vol. 869, Springer-Verlag, Berlin-New York, 1981. A Hopf algebra approach. MR 643482
  • 53. A. V. Zelevinsky, A generalization of the Littlewood-Richardson rule and the Robinson-Schensted-Knuth correspondence, J. Algebra 69 (1981), no. 1, 82–94. MR 613858, https://doi.org/10.1016/0021-8693(81)90128-9

Review Information:

Reviewer: Jacob Towber
Journal: Bull. Amer. Math. Soc. 8 (1983), 357-363
DOI: https://doi.org/10.1090/S0273-0979-1983-15121-2
American Mathematical Society