Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Physical space-time and nonrealizable ${\text{CR}}$-structures


Author: Roger Penrose
Journal: Bull. Amer. Math. Soc. 8 (1983), 427-448
MSC (1980): Primary 83C05, 53C20
DOI: https://doi.org/10.1090/S0273-0979-1983-15109-1
MathSciNet review: 693958
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • A. Andreotti and C. D. Hill (1972), E. E. Levi convexity and the Hans Lewy problem. Part I: Reduction to vanishing theorems; Part II: Vanishing theorems, Ann. Scuola Norm. Sup. Pisa CI. Sci. (3) 26, 325-363; (4) 26, 747-806. MR 460725
  • T. Bailey, L. Ehrenpreis, and R. O. Wells Jr., Weak solutions of the massless field equations, Proc. Roy. Soc. London Ser. A 384 (1982), no. 1787, 403–425. MR 684317, https://doi.org/10.1098/rspa.1982.0165
  • S. Bochner (1943), Analytic and meromorphic continuation by means of Green's formula, Ann. of Math. (2) 44, 652-673. MR 9206
  • H. Bondi ( 1965), Relativity and common sense, Heinemann, London.
  • É. Cartan (1923), Ann. Sci. École Norm. Sup. 40, 325.
  • É. Cartan (1924), Ann. Sci. École Norm. Sup. 41, 1.
  • Élie Cartan, Sur la géométrie pseudo-conforme des hypersurfaces de l’espace de deux variables complexes II, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (2) 1 (1932), no. 4, 333–354 (French). MR 1556687
  • S. S. Chern and J. K. Moser (1974), Real hypersurfaces in complex manifolds, Acta Math. 133, 219-271. MR 425155
  • Michael G. Eastwood, Roger Penrose, and R. O. Wells Jr., Cohomology and massless fields, Comm. Math. Phys. 78 (1980/81), no. 3, 305–351. MR 603497
  • Kurt Friedrichs, Eine invariante Formulierung des Newtonschen Gravitationsgesetzes und des Grenzüberganges vom Einsteinschen zum Newtonschen Gesetz, Math. Ann. 98 (1928), no. 1, 566–575 (German). MR 1512419, https://doi.org/10.1007/BF01451608
  • R. P. Geroch (1970), Domain of dependence, J. Math. Phys. 11, 437. MR 270697
  • C. D. Hill (1973), The Cauchy problem for $\bar \partial $, Partial Differential Equations, Proc. Sympos. Pure Math., vol. 23, Amer. Math. Soc. Providence, R.I. MR 348141
  • C D. Hill and B. MacKichan (1977), Hyperfunction cohomology classes and their boundary values, Ann. Scuola Norm. Sup. Pisa CI. Sci. Ser. IV 4, 577-597. MR 467847
  • L. Hörmander (1966), An introduction to complex analysis in several variables, Van Nostrand-Reinhold, New York. MR 203075
  • Howard Jacobowitz and François Trèves, Nonrealizable CR structures, Invent. Math. 66 (1982), no. 2, 231–249. MR 656622, https://doi.org/10.1007/BF01389393
  • Masaki Kashiwara, Introduction to the theory of hyperfunctions, Seminar on Microlocal Analysis, Ann. of Math. Stud., vol. 93, Princeton Univ. Press, Princeton, N.J., 1979, pp. 3–38. MR 560310
  • M. Kuranishi (1982), Strongly pseudoconvex CR-structures over small balls. Part III: An embedding theorem (to appear).
  • C. R. LeBrun (1980), Spaces of complex geodesics and related structures, Ph.D. thesis, Oxford Univ.
  • C. R. LeBrun, \cal𝐻-space with a cosmological constant, Proc. Roy. Soc. London Ser. A 380 (1982), no. 1778, 171–185. MR 652038, https://doi.org/10.1098/rspa.1982.0035
  • J. Leray (1952), Hyperbolic differential equations, Institute for Advanced Study. MR 80849
  • H. Lewy (1956), On the local character of a solution of an atypical linear differential equation in three variables and a related theorem for regular functions of two complex variables, Ann. of Math. (2) 64, 514-522. MR 81952
  • H. Lewy (1957), An example of a smooth linear partial differential equation without solution, Ann. of Math. (2) 66, 155-158. MR 88629
  • H. Minkowski (1908), Space and time, The Principle of Relativity (H. A. Lorentz, A. Einstein, H. Minkowski and H. Weyl, eds.), Dover, New York, 1923.
  • A. Newlander and L. Nirenberg (1957), Complex analytic coordinates in almost complex manifolds, Ann. of Math. (2) 65, 391-404. MR 88770
  • L. Nirenberg (1973), Lectures on linear partial differential equations, CBMS Regional Conf. Ser. in Math., no. 17, Amer. Math. Soc., Providence, R.I. MR 450755
  • L. Nirenberg (1974), On a question of Hans Lewy, Russian Math. Surveys 29, 251-262. MR 492752
  • R. Penrose (1959), The apparent shape of a relativistically moving sphere, Proc. Cambridge Philos. Soc. 55, 137-139. MR 99869
  • R. Penrose (1968), Structure of space-time, Battelle Recontres, 1967 Lectures in Mathematics and Physics (C. M. DeWitt and J. A. Wheeler, eds.), Benjamin, New York.
  • R. Penrose ( 1969), Solutions of the zero rest-mass equations, J. Math. Phys. 10, 38-39.
  • R. Penrose (1975), Twistor theory, its aims and achievements, Quantum Gravity, an Oxford Symposium (C. J. Isham, R. Penrose and D. W. Sciama (eds.)), Clarendon Press, Oxford.
  • R. Penrose (1977), The twistor programme, Rep. Mathematical Phys. 12, 65-76. MR 465032
  • R. Penrose and R. S. Ward, Twistors for flat and curved space-time, General relativity and gravitation, Vol. 2, Plenum, New York-London, 1980, pp. 283–328. MR 617923
  • H. Poincaré (1905), Science and hypothesis, Walter Scott, London; reprinted, Dover, New York, 1952.
  • H. Poincaré (1906), Sur la dynamique de l'électron, Rend. Circ. Mat. Palermo 21, 129-176.
  • H. Poincaré (1907), Les functions analytique de deux variables et la représentation conforme, Rend. Circ. Mat. Palermo 23, 185-220.
  • H. Poincaré (1954), Oeuvres de Henri Poincaré, vol. 9, Gauthier-Villars, Paris.
  • J. C. Polking and R. O. Wells, Jr. (1976), Boundary values of Dolbeault cohomology classes and a generalized Bochner-Hartogs theorem.
  • M. Sato (1959-60), Theory of hyperfunctions, J. Fac. Sci. Univ. Tokyo Sect. I 8, 139-193, 387-436. MR 114124
  • J. L. Synge (1960), Relativity: the general theory, North-Holland, Amsterdam. MR 118457
  • N. Tanaka (1962), On the pseudo-conformal geometry of hypersurfaces of the space of n complex variables, J. Math. Soc. Japan 14, 397-429. MR 145555
  • J. Terrell (1959), Phys. Rev. 116, 1041. MR 110520
  • A. Trautman (1966), Comparison of Newtonian and relativistic theories of space-time, Perspectives in Geometry and Relativity (B. Hoffmann (ed.)), Indiana Univ. Press, Bloomington and London. MR 202450
  • R. S. Ward (1977), On self-dual gauge fields, Phys. Lett. 61A, 81. MR 443823
  • L. P. Hughston and Richard Samuel Ward (eds.), Advances in twistor theory, Research Notes in Mathematics, vol. 37, Pitman (Advanced Publishing Program), Boston, Mass.-London, 1979. MR 578487
  • R. O. Wells Jr., Complex manifolds and mathematical physics, Bull. Amer. Math. Soc. (N.S.) 1 (1979), no. 2, 296–336. MR 520077, https://doi.org/10.1090/S0273-0979-1979-14596-8
  • R. O. Wells Jr., Hyperfunction solutions of the zero-rest-mass field equations, Comm. Math. Phys. 78 (1980/81), no. 4, 567–600. MR 606464

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1980): 83C05, 53C20

Retrieve articles in all journals with MSC (1980): 83C05, 53C20


Additional Information

DOI: https://doi.org/10.1090/S0273-0979-1983-15109-1

American Mathematical Society