SOME PROBLEMS IN POTENTIAL THEORY
AND THE NOTION OF HARMONIC ENTROPY

BY BORIS KORENBLUM

ABSTRACT. Blaschke regions are studied for certain classes of subharmonic functions in connection with the notion of harmonic entropy. A complete description of Riesz measures for some of these classes is obtained. A new analytic inequality is established.

1. Definitions, notations and two basic problems. $k(\rho) (0 \leq \rho < 1)$ will always denote a continuous nonnegative function such that $k(|z|)$ is subharmonic in the open unit disc D (or, equivalently, such that $k(\rho)$ and $\pi k'(\rho)$ are nondecreasing).

DEFINITION 1. Let $\mathcal{M} \subset D$ be a given set, and let $\mathcal{H}_k(\mathcal{M})$ be the set of all nonnegative harmonic functions $u(z)$ in D such that $u(z) \geq k(|z|)$ on \mathcal{M}. The following quantity will be called the harmonic k-entropy of \mathcal{M}:

$$\mathcal{E}(\mathcal{M}; k) = \min\{u(0) : u \in \mathcal{H}_k(\mathcal{M})\}.$$

If $\mathcal{H}_k(\mathcal{M})$ is empty, we set $\mathcal{E}(\mathcal{M}; k) = +\infty$.

DEFINITION 2. \mathcal{SH}_k will denote the class of subharmonic functions $u(z)$ in D such that

$$u(z) \leq C_u k(|z|) \quad (z \in D),$$

where C_u is some constant (depending on u).

DEFINITION 3. \mathcal{A}_k will denote the class of analytic functions $f(z)$ in D such that

$$\log |f(z)| \in \mathcal{S}_k.$$

DEFINITION 4. A region $G \subset D$ is called a k-Blaschke region if either of two equivalent\(^3\) conditions holds:

(a) for every $u \in \mathcal{SH}_k$

$$b(G; d\mu) = \int_G (1 - |z|) d\mu(z) < \infty,$$

where $d\mu = \Delta u$ is the Riesz measure (i.e. generalized Laplacian) of u;

(b) for every $f \in \mathcal{A}_k$

$$\sum_{z_\nu \in G} (1 - |z_\nu|) < \infty,$$

where $\{z_\nu\}$ is the zero set of f.

Received by the editors January 28, 1982 and, in revised form, September 3, 1982.
1980 Mathematics Subject Classification. Primary 31A05, 30C15; Secondary 26D15.
1 Supported by NSF grant MCS80-03413.

\(^2\)The use of that term, borrowed from Information Theory, is suggested by this interpretation: if $u(z)$ is conceived as a “signal” of strength $u(0)$ and $k(|z|)$ as the “noise”, then $\mathcal{E}(\mathcal{M}; k)$ is the strength of the weakest signal that overcomes the noise on \mathcal{M}.

\(^3\)The equivalence of (a) and (b) is easily proved.
DEFINITION 5. (1) \(S_\zeta \) is the open Stolz angle whose closure is the convex hull of the disk \(|z| < 1/\sqrt{2} \) and the point \(\zeta \in \partial \mathcal{D} \).

(2) For a given closed set \(F \subset \partial \mathcal{D} \), \(G_F \) is the union of \(S_\zeta (\zeta \in F) \).

(3) \(\mathcal{L} \) is the class of regions \(G = \{ z = r e^{i\theta} : 0 \leq r < f(\theta) \leq 1 \} \), where \(f(\theta) \) is a \(2\pi \)-periodic function satisfying the Lipschitz condition \(|f(\theta_1) - f(\theta_2)| \leq |\theta_1 - \theta_2| \). It is easily seen that every \(G_F \) is an \(\mathcal{L} \)-region.

All results announced below are associated with the following two basic problems.

(A) Given \(k(r) \), characterize regions of finite \(k \)-entropy and find estimates of that quantity.

(B) Given \(k(r) \), characterize \(k \)-Blaschke regions and find effective estimates of the integral (1.3) and the sum (1.3').

The main motivation for (B) is to ultimately obtain a complete description of zero sets for \(\mathcal{A}(k) \)—an objective that we are able to realize only for the case of “slowly increasing” \(k(r) \). Since the problem of \(\mathcal{A}(k) \)-zero sets is essentially a potential-theoretic one, there seems to be no good reason for studying only the special Riesz measures \(d\mu = \Delta \log |f(z)| \) determined by the zeros of an \(f \in \mathcal{A}(k) \), rather than the general Riesz measures for \(\mathcal{S}(k) \). In emphasizing the potential-theoretic, rather than complex-analytic, aspect, we also aim at similar multidimensional problems; in fact, some interesting results [4] for the unit ball in \(\mathbb{R}^m \) have recently been obtained in this circle of ideas (see also §3 below).

Understanding the structure of \(\mathcal{A}(k) \)-zero sets is also an essential first step towards a satisfactory factorization theory for \(\mathcal{A}(k) \); see [1], where the case \(k(r) = \log(1 - r) \) is treated.

As to (A), this problem is instrumental in solving (B). For slowly increasing \(k(r) \) the \(k \)-entropy of an \(\mathcal{L} \)-region \(G \) can be estimated in terms of the following integral

\[
I(G; k) = \int_0^{2\pi} k[f(\theta)] d\theta,
\]

where \(k(1) = k(1^-) \) (= \(\infty \), except for the trivial case of a bounded \(k(r) \)).

In the particular case \(k(r) = (1 - r)^{-\alpha} \) (\(0 < \alpha < 1 \)) our problems lead to a new elementary inequality (3.3).

2. Slowly increasing \(k(r) \). In this section an additional condition is imposed on \(k(r) \) (\(C \) is some constant):

\[
k(1 - x^2) \leq Ck(1 - x) \quad (0 < x < \frac{1}{2}).
\]

THEOREM 1. (i) \(A \in \mathcal{L} \) is a \(k \)-Blaschke region if and only if \(I(G; k) < \infty \).

(ii) There is a constant \(\lambda > 1 \) depending only on \(k(r) \) with the property that for every \(G \in \mathcal{L} \) there is a \(G' \in \mathcal{L} \), \(G' \supset G \), such that \(I(G', k) < \lambda I(G; k) \) and

\[
\lambda^{-1}I(G; k) \leq \mathcal{E}(G', k) < \lambda I(G; k).
\]

4Detailed proofs will be published elsewhere.
THEOREM 2. The necessary and sufficient condition for a nonnegative Borel measure $d\mu$ in D to be the Riesz measure of a function $u \in \mathcal{H}^{(k)}$ is

\begin{equation}
(2.3) \quad b(G_F; d\mu) \leq CI(G_F; k)
\end{equation}

for all finite sets $F \subset \partial D$ (C is some constant). In this case (2.3) holds also for all $G \in L$, but perhaps with a greater constant C.

3. Some other results. (1) A Stolz angle is a Blaschke region for $\mathcal{H}^{(k)}$ if and only if

\begin{equation}
(3.1) \quad \int_0^1 [k(r)(1-r)^{-1}]^{1/2} dr < \infty.
\end{equation}

(See [2].) A similar result for the unit ball in \mathbb{R}^m (with $1/m$ substituted for $1/2$ in (3.1)) has recently been obtained by Krzysztof Samotij (written communication).

(2) Consider the region $G = \{z \in D: M(1-|z|^2)|1-z|^2 > k(|z|)\}$, where M is large enough to ensure that $G \supset S_1$. Then (3.1) implies $I(G; K) < \infty$ and $E(G; k) < \infty$.

(3) A recent result by C. N. Linden [3] shows that, under some extra conditions on the regularity of growth of k, (3.1) implies that the above region G is a Blaschke region for $\mathcal{H}^{(k)}$. Similar results describing some “tangential” Blaschke regions for the ball in \mathbb{R}^m are given in [4].

(4) In attempting to extend the results of §2 to wider classes of subharmonic functions, it is natural to consider the particular case $k(r) = (1-r)^{-\alpha}$, where α is fixed, $0 < \alpha < 1$. In this case the assertion (i) of Theorem 1 still holds, provided the function $r = f(\theta)$, which describes the boundary of G, has a finite number of maxima and minima. The proof of this depends on

THEOREM 3. There is a constant C_α such that for arbitrary real $x_0 < x_1 < \cdots < x_n$ satisfying

\begin{equation}
(3.2) \quad x_1 - x_0 \leq x_2 - x_1 \leq \cdots \leq x_n - x_{n-1},
\end{equation}

and for arbitrary nonnegative $\{m_i\}_{i=0}^n$, the following inequality holds:

\begin{equation}
\int_{x_0}^{x_n} \left\{ \sum_{i=0}^n m_i(x - x_i)^{-2} \right\}^{\alpha/(\alpha+1)} dx
\leq C_\alpha \left(\sum_{i=0}^n m_i \right)^{\alpha/(\alpha+1)} \left\{ \sum_{i=1}^n (x_i - x_{i-1})^{1-\alpha} \right\}^{1/(\alpha+1)}.
\end{equation}

Because of the restriction (3.2), which cannot be dropped altogether, our results for this case fall short of a complete description of Riesz measures.

REFERENCES

DEPARTMENT OF MATHEMATICS AND STATISTICS, STATE UNIVERSITY OF NEW YORK AT ALBANY, ALBANY, NEW YORK 12222