Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.


Full text of review: PDF   This review is available free of charge.
Book Information:

Authors: Loo Keng Hua and Yuan Wang
Title: Applications of number theory to numerical analysis
Additional book information: Springer-Verlag, Berlin, Science Press, Beijing, 1981, 241 pp., $39.00.

References [Enhancements On Off] (What's this?)

  • 1. A. Baker, On some Diophantine inequalities involving the exponential function, Canad. J. Math. 17 (1965), 616–626. MR 0177946, https://doi.org/10.4153/CJM-1965-061-8
  • 2. Heinrich P. Baltes, Peter K. J. Draxl, and Eberhard R. Hilf, Quadratsummen und gewisse Randwertprobleme der mathematischen Physik, J. Reine Angew. Math. 268/269 (1974), 410–417 (German). Collection of articles dedicated to Helmut Hasse on his seventy-fifth birthday, II. MR 0344210
  • 3. H. Conroy, Molecular Schrödinger equation. VII: A new method for the evaluation of multidimensional integrals, J. Chem. Phys. 47 (1967), 5307-5318.
  • 4. U. Dieter, Autokorrelation multiplikativ-erzeugter Pseudo-Zufallszahlen, Operations Research Verfahren 6 (1969), 69-85.
  • 5. U. Dieter and J. Ahrens, An exact determination of serial correlations of pseudorandom numbers., Numer. Math. 17 (1971), 101–123. MR 0286245, https://doi.org/10.1007/BF01406000
  • 6. Seymour Haber, Experiments on optimal coefficients, Applications of number theory to numerical analysis (Proc. Sympos., Univ. Montréal, Montreal, Que., 1971) Academic Press, New York, 1972, pp. 11–37. MR 0391479
  • 7. J. H. Halton, On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals, Numer. Math. 2 (1960), 84–90. MR 0121961, https://doi.org/10.1007/BF01386213
  • 8. Edmund Hlawka, Uniform distribution modulo 1 and numerical analysis, Compositio Math. 16 (1964), 92–105 (1964). MR 0175278
  • 9. D. H. Knuth, The art of computer programming (esp. Vol. 2), Addison-Wesley, Reading, Mass., 1969.
  • 10. Zdeněk Kopal, Numerical analysis. With emphasis on the application of numerical techniques to problems of infinitesimal calculus in single variable, John Wiley & Sons, Inc., New York, 1955. MR 0077213
  • 11. N. M. Korobov, Approximate calculation of repeated integrals by number-theoretical methods, Dokl. Akad. Nauk SSSR (N.S.) 115 (1957), 1062–1065 (Russian). MR 0098714
  • 12. N. M. Korobov, Approximate evaluation of repeated integrals, Dokl. Akad. Nauk SSSR 124 (1959), 1207–1210 (Russian). MR 0104086
  • 13. N. M. Korobov, Number-theoretic methods of approximate analysis, Fitmatgiz, Moscow, 1963.
  • 14. L. Kuipers and H. Niederreiter, Uniform distribution of sequences, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1974. Pure and Applied Mathematics. MR 0419394
  • 15. D. H. Lehmer, Mathematical methods in large-scale computing units, Proceedings of a Second Symposium on Large-Scale Digital Calculating Machinery, 1949, Harvard University Press, Cambridge, Mass., 1951, pp. 141–146. MR 0044899
  • 16. Kaj L. Nielsen, Methods in numerical analysis, The Macmillan Company, New York, 1956. MR 0076428
  • 17. Wolfgang M. Schmidt, Simultaneous approximation to algebraic numbers by rationals, Acta Math. 125 (1970), 189–201. MR 0268129, https://doi.org/10.1007/BF02392334
  • 18. Wolfgang M. Schmidt, Diophantine approximation, Lecture Notes in Mathematics, vol. 785, Springer, Berlin, 1980. MR 568710
  • 19. S. C. Zaremba, Good lattice points, discrepancy, and numerical integration, Ann. Mat. Pura Appl. (4) 73 (1966), 293–317. MR 0218018, https://doi.org/10.1007/BF02415091
  • 20. S. K. Zaremba, La discrépance isotope et l'intégration numérique, Ann. Mat. Pura Appl. 87 (1970), 125-136.
  • 21. S. K. Zaremba, La méthode des “bons treillis” pour le calcul des intégrales multiples, Applications of number theory to numerical analysis (Proc. Sympos., Univ. Montreal, Montreal, Que., 1971) Academic Press, New York, 1972, pp. 39–119 (French, with English summary). MR 0343530
  • 22. S. C. Zaremba, Some applications of multidimensional integration by parts, Ann. Polon. Math. 21 (1968), 85–96. MR 0235731
  • 23. S. K. Zaremba (ed.), Applications of number theory to numerical analysis, Academic Press, New York-London, 1972. MR 0334452

Review Information:

Reviewer: Emil Grosswald
Journal: Bull. Amer. Math. Soc. 8 (1983), 489-496
DOI: https://doi.org/10.1090/S0273-0979-1983-15132-7