Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.


Full text of review: PDF   This review is available free of charge.
Book Information:

Author: S. C. Power
Title: Hankel operators on Hilbert space
Additional book information: Research Notes in Mathematics, No. 64, Pitman Advanced Publishing Program, Boston-London-Melbourne, 1982, 87 pp., $13.95. ISBN 0-273-08518-2.

References [Enhancements On Off] (What's this?)

  • 1. V. M. Adamjan, D. Z. Arov and M. G. Krein, Infinite Hankel matrices and generalized Carathéodory-Fejér and Riesz problems, Funkcional Anal. i Prilozen 2 (1968), 1-19 = Functional Anal. Appl. 2 (1968), 1-18. MR 234274
  • 2. V. M. Adamjan, D. Z. Arov and M. G. Krein, Analytic properties of Schmidt pairs for a Hankel operator and the generalized Shur-Takagi problem, Mat. Sb. 86 (128) (1971), 34-75 = Math. USSR Sbornik 15 (1971), 31-73. MR 298453
  • 3. S. Axler, I. D. Berg, N. Jewell and A. Shields, Approximation by compact operators and the space H + C, Ann. of Math. (2) 109 (1979), 601-612. MR 534765
  • 4. S. Axler, S.-Y. A. Chang and D. Sarason, Products of Toeplitz operators, J. Integral Equations Operator Theory 1 (1978), 285-309. MR 511973
  • 5. C. Carathéodory and L. Fejér, Über den Zusammenhang der Extremen von harmonischen Funktionen mit ihren Koeffizienten und über den Picard-Landauschen Satz, Rend. Circ. Math. Palermo 32 (1911), 218-239.
  • 6. D. N. Clark, On the spectra of bounded, Hermitian Hankel matrices, Amer. J. Math. 90 (1968), 627-656. MR 231112
  • 7. D. N. Clark, On interpolating sequences and the theory of Hankel and Toeplitz operators, J. Functional Analysis 5 (1970), 247-258. MR 254628
  • 8. L. A. Coburn, The C*-algebra generated by an isometry. II, Trans. Amer. Math. Soc. 137 (1969), 211-217. MR 236720
  • 9. R. R. Coifman and R. Rochberg, Representation theorems for holomorphic and harmonic functions in L, Astérisque 77 (1980), 11-66. MR 604369
  • 10. I. C. Goldberg and N. Ja. Krupnik, The algebra generated by Toeplitz matrices, Funkcional Anal. i Prilozen 3 (1969), 45-56. MR 250082
  • 11. P. Hartman, On completely continuous Hankel matrices, Proc. Amer. Math. Soc. 9 (1958), 362-366. MR 108684
  • 12. P. Hartman and A. Wintner, On the spectra of Toeplitz's matrices, Amer. J. Math. 72 (1950), 359-366. MR 36936
  • 13. J. S. Howland, Trace class Hankel operators, Quart. J. Math. Oxford Ser. (2) 22 (1971), 147-159. MR 288630
  • 14. M. G. Krein, Integral equations on a half line with difference kernel, Uspehi Mat. Nauk (N.S.) 13 (1958), No. 5 (83), 3-120. MR 102721
  • 15. W. Magnus, On the spectrum of Hilbert's matrix, Amer. J. Math. 72 (1950), 699-704. MR 41358
  • 16. Z. Nehari, On bounded bilinear forms, Ann. of Math. (2) 65 (1957), 153-162. MR 82945
  • 17. V. V. Peller, Hankel operators of the class γ, Mat. Sb. (N.S.) 113 (155) (1980), 538-581. MR 602274
  • 18. S. C. Power, The essential spectrum of a Hankel operator with piecewise continuous symbol, Michigan Math. J. 25 (1978), 117-121. MR 487567
  • 19. S. C. Power, C*-algebra generated by Hankel operators and Toeplitz operators, J. Functional Analysis 31 (1979), 52-68. MR 523113
  • 20. S. C. Power, Hankel operators with PQC symbol and singular integral operators, Proc. London Math. Soc. 40 (1980), 45-65. MR 579716
  • 21. C. R. Putnam, Commutators and absolutely continuous operators, Trans. Amer. Math. Soc. 87 (1958), 513-525. MR 100226
  • 22. M. Rosenblum, On the Hilbert matrix. I, II, Proc. Amer. Math. Soc. 9 (1958), 137-140; 9 (1958), 581-585. MR 94626
  • 23. M. Rosenblum, The absolute continuity of Toeplitz's matrices, Pacific J. Math. 10 (1960), 987-996. MR 114125
  • 24. T. Takagi, On an algebraic problem related to an analytic theorem of Carathéodory and Fejér and on an allied theorem of Landau, Japanese J. Math. 1 (1924), 83-93.
  • 25. A. L. Volberg, Two remarks concerning the theorem of S. Axler, S.-Y. A. Chang and D. Sarason, J. Operator Theory 7 (1982), 209-218. MR 658609

Review Information:

Reviewer: Douglas N. Clark
Journal: Bull. Amer. Math. Soc. 9 (1983), 98-102
DOI: https://doi.org/10.1090/S0273-0979-1983-15171-6
American Mathematical Society