Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

The uncertainty principle


Author: Charles L. Fefferman
Journal: Bull. Amer. Math. Soc. 9 (1983), 129-206
MSC (1980): Primary 35-02, 35H05, 35P15, 35S05, 42B20, 42B25, 81H05
DOI: https://doi.org/10.1090/S0273-0979-1983-15154-6
Remark: Proc. Amer. Math. Soc. 108, no. 2 (1990), pp. 407-409.
MathSciNet review: 707957
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. R. Beals and C. Fefferman, On local solvability of partial differential equations, Ann. of Math. (2) 97 (1973), 552-571. MR 352746
  • 2. R. Beals and C. Fefferman, Spatially inhomogenous pseudodifferential operators, Comm. Pure Appl. Math. 27 (1974), 1-24. MR 352747
  • 3. Michael Beals, Charles Fefferman, and Robert Grossman, Strictly pseudoconvex domains in 𝐶ⁿ, Bull. Amer. Math. Soc. (N.S.) 8 (1983), no. 2, 125–322. MR 684898, https://doi.org/10.1090/S0273-0979-1983-15087-5
  • 4. A. Calderón and R. Vaillancourt, A class of bounded pseudodifferential operators, Proc. Nat. Acad. Sci. U.S.A. 69 (1972), 1185-1187. MR 298480
  • 5. T. Carleman, Complete works (A. Pleijel et al, eds.), Malmo Litös, 1960.
  • 6. D. Catlin, Necessary conditions for subelliptiticy and hypoellipticity for the $øverline\partial$-Neumann problem on pseudoconvex domains, Recent Developments in Several Complex Variables, Ann. of Math. Stud., no. 100, 1981.
  • 7. Shiu Yuen Cheng and Shing Tung Yau, On the existence of a complete Kähler metric on noncompact complex manifolds and the regularity of Fefferman’s equation, Comm. Pure Appl. Math. 33 (1980), no. 4, 507–544. MR 575736, https://doi.org/10.1002/cpa.3160330404
  • 8. Antonio Córdoba and Charles Fefferman, Wave packets and Fourier integral operators, Comm. Partial Differential Equations 3 (1978), no. 11, 979–1005. MR 507783, https://doi.org/10.1080/03605307808820083
  • 9. J. D'Angelo, Real hypersurfaces with degenerate Levi form, Thesis, Princeton Univ., Princeton, N.J., 1976.
    9a. F. Dyson and A. Lenard, Stability of matter. I, J. Math. Phys. 8 (1967), 423-434.

  • 10. Yu. V. Egorov, Subelliptic operators, Uspekhi Mat. Nauk. 30 (1975), 57-104; English transl, Russian Math. Surveys 30 (1975). MR 410474
  • 11. C. Fefferman, Recent progress in classical Fourier analysis, Proc. Internat. Congress Math. (Vancouver, 1974), Vol. 1, Canad. Math. Congr., Montreal, Que., 1975, pp. 95-118. MR 510853
  • 12. C. Fefferman, The Bergman kernel and biholomorphic mappings of pseudoconvex domains, Invent. Math. 26 (1974), 1-66. MR 350069
  • 13. C. Fefferman and D. H. Phong, On positivity of pseudo-differential operators, Proc. Nat. Acad. Sci. U.S.A. 75 (1978), no. 10, 4673–4674. MR 507931
  • 14. C. Fefferman and D. H. Phong, The uncertainty principle and sharp Gȧrding inequalities, Comm. Pure Appl. Math. 34 (1981), no. 3, 285–331. MR 611747, https://doi.org/10.1002/cpa.3160340302
  • 15. C. Fefferman and D. H. Phong, On the asymptotic eigenvalue distribution of a pseudodifferential operator, Proc. Nat. Acad. Sci. U.S.A. 77 (1980), no. 10, 5622–5625. MR 589278
  • 16. C. Fefferman and D. H. Phong, Subelliptic eigenvalue problems, Conference on harmonic analysis in honor of Antoni Zygmund, Vol. I, II (Chicago, Ill., 1981) Wadsworth Math. Ser., Wadsworth, Belmont, CA, 1983, pp. 590–606. MR 730094
  • 17. C. Fefferman and D. H. Phong, Symplectic geometry and positivity of pseudodifferential operators, Proc. Nat. Acad. Sci. U.S.A. 79 (1982), no. 2, 710–713. MR 648064
  • 18. R. Fefferman, personal communication.
  • 19. G. Folland and E. M. Stein, Estimates for the $\bar \partial \sbb$ complex and analysis on the Heisenberg group, Comm. Pure Appl. Math. 27 (1974), 429-522. MR 367477
  • 20. R. Greiner and E. M. Stein, Estimates for the $øverline\partial$-Neumann problem, Math. Notes 19 (1977).
  • 21. R. Hunt, An extension of the Marcinkiewicz interpolation theorem, Bull. Amer. Math. Soc. 70 (1964), 803-807. MR 169037
  • 22. L. Hörmander, Hypoelliptic second-order differential equations, Acta Math. 119 (1967), 147-171. MR 222474
  • 23. L. Hörmander, The spectral function of an elliptic operator, Acta Math. 121 (1968), 192-218. MR 609014
  • 24. Lars Hörmander, Subelliptic operators, Seminar on Singularities of Solutions of Linear Partial Differential Equations (Inst. Adv. Study, Princeton, N.J., 1977/78) Ann. of Math. Stud., vol. 91, Princeton Univ. Press, Princeton, N.J., 1979, pp. 127–208. MR 547019
  • 25. D. Iagolnitzer, Appendix: Microlocal essential support of a distribution and decomposition theorems —an introduction, Lecture Notes in Math., Vol. 449, Springer-Verlag, 1975, pp. 121-132.
  • 26. J. J. Kohn, Harmonic integrals on strongly pseudoconvex manifolds. I, II, Ann. of Math. (2) 78 (1963), 206-213; ibid. 79 (1964), 450-472. MR 208200
  • 27. J. J. Kohn, Subellipticity of the ∂-Neumann problem on pseudo-convex domains: sufficient conditions, Acta Math. 142 (1979), no. 1-2, 79–122. MR 512213, https://doi.org/10.1007/BF02395058
  • 28. A. Kolmogoroff, Zufällige Bewegungen (zur Theorie der Brownschen Bewegung), Ann. of Math. (2) 35 (1934), no. 1, 116–117 (German). MR 1503147, https://doi.org/10.2307/1968123
  • 29. R. Lee and R. Melrose, to appear.
  • 30. E. Lieb, Stability of matter, Rev. Modern Phys. 48 (1976), 553-569. MR 456083
  • 31. R. Moyer, On the Nirenberg-Treves condition for local solvability, J. Differential Equations 26 (1977), 223-239. MR 460857
  • 32. A. Nagel, E. M. Stein and S. Wainger, to appear.
  • 33. L. Nirenberg and F. Trèves, Solvability of a first-order linear partial differential equation, Comm. Pure Appl. Math. 16 (1963), 331-351. MR 163045
  • 34. L. Nirenberg and F. Trèves, On local solvability of linear partial differential equations. I: Necessary conditions; II: Sufficient conditions, Comm. Pure Appl. Math. 23 (1970), 1-38; 459-509. MR 264470
  • 35. O. Oleinik and E. Radkevitch, Second-order equations with non-negative characteristic form.
  • 36. D. H. Phong, On integral representations for the Neumann operator, Proc. Nat. Acad. Sci. U.S.A. 76 (1979), no. 4, 1554–1558. MR 526179
  • 37. L. Rothschild and E. M. Stein, Hypoelliptic differential operators and nilpotent groups, Acta Math. 137 (1976), 247-320. MR 436223
  • 38. A. Sanchez, Estimates for kernels associated to some subelliptic operators, Thesis, Princeton Univ., 1983.
  • 39. B. Simon, to appear.
  • 40. Barry Simon, Functional integration and quantum physics, Pure and Applied Mathematics, vol. 86, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1979. MR 544188
  • 41. H. Weyl, Ramifications, old and new, of the eigenvalue problem, Bull. Amer. Math. Soc. 56 (1950), 115-139. MR 34940

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1980): 35-02, 35H05, 35P15, 35S05, 42B20, 42B25, 81H05

Retrieve articles in all journals with MSC (1980): 35-02, 35H05, 35P15, 35S05, 42B20, 42B25, 81H05


Additional Information

DOI: https://doi.org/10.1090/S0273-0979-1983-15154-6

American Mathematical Society