Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Invariant theory of $G_2$


Author: Gerald W. Schwarz
Journal: Bull. Amer. Math. Soc. 9 (1983), 335-338
MSC (1980): Primary 17A36, 20F29, 20G05
DOI: https://doi.org/10.1090/S0273-0979-1983-15197-2
MathSciNet review: 714998
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. M. Hochster and J. Roberts, Rings of invariants of reductive groups acting on regular rings are Cohen-Macaulay, Adv. in Math. 13 (1974), 115-175. MR 347810
  • 2. C. Procesi, The invariant theory of n x n matrices, Adv. in Math. 19 (1976), 306-381. MR 419491
  • 3. R. D. Schafer, An introduction to non-associative algebras, Academic Press, New York, 1966. MR 210757
  • 4. G. Schwarz, Representations of simple Lie groups with regular rings of invariants, Invent. Math. 49 (1978), 167-191. MR 511189
  • 5. G. Schwarz, Representations of simple Lie groups with a free module of covariants, Invent. Math. 50 (1978), 1-12. MR 516601
  • 6. R. P. Stanley, Combinatorics and invariant theory, Proc. Sympos. Pure Math., Vol. 34, Amer. Math. Soc., Providence, R. I., 1979, pp. 345-355. MR 525334
  • 7. H. Weyl, The classical groups, 2nd ed., Princeton Univ. Press, Princeton, N. J., 1946. MR 1488158

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1980): 17A36, 20F29, 20G05

Retrieve articles in all journals with MSC (1980): 17A36, 20F29, 20G05


Additional Information

DOI: https://doi.org/10.1090/S0273-0979-1983-15197-2

American Mathematical Society