Invariant theory of $G_2$
Author:
Gerald W. Schwarz
Journal:
Bull. Amer. Math. Soc. 9 (1983), 335-338
MSC (1980):
Primary 17A36, 20F29, 20G05
DOI:
https://doi.org/10.1090/S0273-0979-1983-15197-2
MathSciNet review:
714998
Full-text PDF
References | Similar Articles | Additional Information
- 1. M. Hochster and J. Roberts, Rings of invariants of reductive groups acting on regular rings are Cohen-Macaulay, Adv. in Math. 13 (1974), 115-175. MR 347810
- 2. C. Procesi, The invariant theory of n x n matrices, Adv. in Math. 19 (1976), 306-381. MR 419491
- 3. R. D. Schafer, An introduction to non-associative algebras, Academic Press, New York, 1966. MR 210757
- 4. G. Schwarz, Representations of simple Lie groups with regular rings of invariants, Invent. Math. 49 (1978), 167-191. MR 511189
- 5. G. Schwarz, Representations of simple Lie groups with a free module of covariants, Invent. Math. 50 (1978), 1-12. MR 516601
- 6. R. P. Stanley, Combinatorics and invariant theory, Proc. Sympos. Pure Math., Vol. 34, Amer. Math. Soc., Providence, R. I., 1979, pp. 345-355. MR 525334
- 7. H. Weyl, The classical groups, 2nd ed., Princeton Univ. Press, Princeton, N. J., 1946. MR 1488158
Retrieve articles in Bulletin of the American Mathematical Society with MSC (1980): 17A36, 20F29, 20G05
Retrieve articles in all journals with MSC (1980): 17A36, 20F29, 20G05
Additional Information
DOI:
https://doi.org/10.1090/S0273-0979-1983-15197-2