Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.


Full text of review: PDF   This review is available free of charge.
Book Information:

Authors: Kentaro Yano and Masahiro Kon
Title: $CR$ submanifolds of Kaehlerian and Sasakian manifolds
Additional book information: Progress in Mathematics, Vol. 30, Birkhauser, Cambridge, Mass., 1982, x + 208 pp., $17.50. ISBN 3-7643-3119-4.

References [Enhancements On Off] (What's this?)

  • 1. A. Bejancu, CR-submanifolds of a Kaehler manifold. I, II, Proc. Amer. Math. Soc. 69 (1978), 135-142; Trans. Amer. Math. Soc. 250 (1979), 333-345. MR 467630
  • 2. Aurel Bejancu, On the geometry of leaves on a CR-submanifold, An. Ştiinţ. Univ. “Al. I. Cuza” Iaşi Secţ. I a Mat. (N.S.) 25 (1979), no. 2, 393–398. MR 562327
  • 3. D. E. Blair, Contact manifolds in Riemannian geometry, Lecture Notes in Math., vol. 509, Springer, Berlin, 1976. MR 467588
  • 4. David E. Blair and Bang-Yen Chen, On CR-submanifolds of Hermitian manifolds, Israel J. Math. 34 (1979), no. 4, 353–363 (1980). MR 570892, https://doi.org/10.1007/BF02760614
  • 5. Bang-yen Chen, Geometry of submanifolds and its applications, Science University of Tokyo, Tokyo, 1981. MR 627323
  • 6. Bang-yen Chen, CR-submanifolds of a Kaehler manifold. I, J. Differential Geom. 16 (1981), no. 2, 305–322. MR 638795
  • 7. B. Y. Chen and K. Ogiue, On totally real submanifolds, Trans. Amer. Math. Soc. 193 (1974), 257-266. MR 346708
  • 8. E. Kähler, Über eine bemerkenswerte Hermitische Metrik, Abh. Math. Sem. Univ. Hamburg 9 (1933), 173-186.
  • 9. K. Ogiue, Differential geometry of Kaehler submanifolds, Adv. in Math. 13 (1974), 73-114. MR 346719
  • 10. J. A. Schouten and D. van Dantzig, Über unitäre Geometrie, Math. Ann. 103 (1930), no. 1, 319–346 (German). MR 1512625, https://doi.org/10.1007/BF01455698
  • 11. J. A. Schouten and D. van Dantzig, Über unitäre Geometrie konstanter Krümmung, Proc. Kon. Nederl. Akad. Amster dam 34 (1931), 1293-1314.
  • 12. K. Yano, On a structure by a tensor field ƒ of type (1, 1) satisfying ƒ3 + ƒ = 0, Tensor (N.S.) 14 (1963), 99-109. MR 159296

Review Information:

Reviewer: Bang-Yen Chen
Journal: Bull. Amer. Math. Soc. 9 (1983), 361-364
DOI: https://doi.org/10.1090/S0273-0979-1983-15209-6
American Mathematical Society